

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

«ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΕΓΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΑΠΟ ΦΩΤΟΒΟΛΤΑΪΚΗ ΜΟΝΑΔΑ ΟΝΟΜΑΣΤΙΚΗΣ ΙΣΧΥΟΣ 500KW ΚΑΙ 1MW ΣΕ ΣΤΑΘΕΡΕΣ ΚΑΙ ΚΙΝΗΤΕΣ (SUN TRACKING) ΒΑΣΕΙΣ.»

ΦΟΙΤΗΤΗΣ: ΑΓΓΕΛΟΥ ΓΕΩΡΓΙΟΣ (Α.Μ. 6965)

ΦΟΙΤΗΤΗΣ: ΚΑΠΡΑΝΑΣ ΔΗΜΗΤΡΙΟΣ (Α.Μ. 7550)

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΒΟΥΡΟΣ ΑΝΔΡΕΑΣ

(ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΣ ΥΠΟΤΡΟΦΟΣ)

ПАТРА 2023

ΠΡΟΛΟΓΟΣ

Το παρόν τεύχος αποτελεί την Πτυχιακη Εργασία που εκπονήθηκε στο Τμήμα Μηχανολόγων Μηχανικών του Πανεπιστημίου Πελοποννήσου και αναφέρεται σε συγκριτική μελέτη εγκατάστασης και παραγωγής ηλεκτρικής ενέργειας από φωτοβολταϊκή μονάδα ονομαστικής ισχύος 500 KW και 1 MW σε σταθερές και κινητές (sun tracking) βάσεις.

Στην εισαγωγή πραγματοποιείται μια ιστορική αναδρομή των φωτοβολταϊκών και της εκμετάλλευσης της ηλιακής ενέργειας. Ακολουθεί το πρώτο κεφάλαιο όπου περιγράφονται οι τρόποι υποστύλωσης των φωτοβολταϊκών πάνελ και στο τρίτο και τέταρτο κεφάλαιο αναλύονται οι απώλειες στα ηλιακά φωτοβολταϊκά συστήματα γενικά και στα φωτοβολταϊκά πάνελ αντίστοιχα. Ακολουθεί το πέμπτο κεφάλαιο το οποίο αποτελεί έναν οδηγό χρήσης για το πρόγραμμα που χρησιμοποιήθηκε για την μελέτη. Κατόπιν, στο έκτο κεφάλαιο πραγματοποιούνται οι μελέτες για τις δύο περιπτώσεις ισχύος (500kW και 1MW) και στο έβδομο κεφάλαιο παρουσιάζεται η οικονομοτεχνική μελέτη και για τις δύο περιπτώσεις.

Γενικά, αποκτήθηκε γνώση σχετικά με το πρόγραμμα που χρησιμοποιήθηκε για τις μελέτες και επίσης για τον τρόπο υπολογισμού οικονομικών μεγεθών που χρησιμοποιούνται προκειμένου να επιβεβαιωθεί η βιωσιμότητα της επένδυσης.

Ευχαριστούμε θερμά τον κ. Ανδρέα Βούρο για την επιμέλεια, την αμείωτη βοήθεια και στήριξη του στην εκπόνηση της εργασίας μας.

ΙΟΥΛΙΟΣ 2023

Υπεύθυνη Δήλωση Φοιτητών: Οι κάτωθι υπογεγραμμένοι Φοιτητές έχουμε επίγνωση των συνεπειών του Νόμου περί λογοκλοπής και δηλώνουμε υπεύθυνα ότι είμαστε συγγραφείς αυτής της Πτυχιακής Εργασίας, έχουμε δε αναφέρει στην Βιβλιογραφία μας όλες τις πηγές τις οποίες χρησιμοποιήσαμε και λάβαμε ιδέες ή δεδομένα. Δηλώνουμε επίσης ότι, οποιοδήποτε στοιχείο ή κείμενο το οποίο έχουμε ενσωματώσει στην εργασία μας προερχόμενο από Βιβλία ή άλλες εργασίες ή το διαδίκτυο, γραμμένο ακριβώς ή παραφρασμένο, το έχουμε πλήρως αναγνωρίσει ως πνευματικό έργο άλλου συγγραφέα και έχουμε αναφέρει ανελλιπώς το όνομά του και την πηγή προέλευσης.

Ο Φοιτητής

Ο Φοιτητής

Καπράνας Δημήτριος

(Ονοματεπώνυμο)

Αγγέλου Γεώργιος

(Ονοματεπώνυμο)

hereitter

.....

(Υπογραφή)

.....

(Υπογραφή)

<u>ΠΕΡΙΛΗΨΗ</u>

Η παρούσα Πτυχιακή Εργασία αποτελεί μια συγκριτική μελέτη εγκατάστασης και παραγωγής ηλεκτρικής ενέργειας από φωτοβολταϊκή μονάδα ονομαστικής ισχύος 500 KW και 1 MW σε σταθερές και κινητές (sun tracking) βάσεις. Οι ανανεώσιμες πηγές ενέργειας (ΑΠΕ) έχουν εδραιώσει την παρουσία τους αποδεικνύοντας την αξία τους σε παγκόσμιο επίπεδο. Η Ελλάδα αποτελεί ανερχόμενη δύναμη με στόχο να γίνει κόμβος ΑΠΕ στο μέλλον στον παγκόσμιο ενεργειακό χάρτη. Στην παρούσα εργασία διαπιστώνεται η ωριμότητα και οι δυνατότητες της τεχνολογίας των φωτοβολταϊκών που είναι ένας από τους πυλώνες των ΑΠΕ. Παράλληλα διαπιστώνονται και τα μεγάλα οικονομικά οφέλη από την εκμετάλλευση της ηλιακής ενέργειας.

Στην εισαγωγή πραγματοποιείται μια ιστορική αναδρομή της εκμετάλλευσης της ηλιακής ενέργειας από τα φωτοβολταϊκά πάνελ με την αρχή να γίνεται το 1839 από τον γάλλο επιστήμονα Edmond Becquerel που ανακάλυψε το φωτοβολταϊκό φαινόμενο. Στη συνέχεια περιγράφονται οι προσπάθειες για την παραγωγή φωτοβολταϊκών πάνελ κυρίως στις δεκαετίες 1950-1970 και οι βελτιώσεις που έφεραν την απόδοσή τους στα σημερινά δεδομένα

Στο δεύτερο κεφάλαιο παρουσιάζονται οι τρόποι υποστύλωσης των φωτοβολταϊκών πάνελ. Υπάρχουν δύο μεγάλες κατηγορίες, οι σταθερές βάσεις και οι ιχνηλάτες (trackers). Στις σταθερές βάσεις η θέση και η κλίση των πάνελ δεν αλλάξει κατά τη διάρκεια της ημέρας. Το μόνο που μπορεί να αλλάξει είναι η κλίση χειμώνα – καλοκαίρι για καλύτερη πρόσπτωση των ηλιακών ακτινών. Στα συστήματα με ιχνηλάτες η κλίση και ο προσανατολισμός των πάνελ μεταβάλλονται διαρκώς «κυνηγώντας» την ηλιακή ακτινοβολία με στόχο την αύξηση της παραγόμενης ηλεκτρικής ενέργειας, γεγονός που επιβεβαιώνεται με τα σενάρια που παρουσιάζονται στην παρούσα εργασία.

Η απόδοση των ηλιακών συστημάτων εξαρτάται από πολλούς παράγοντες τόσο κατά τον σχεδιασμό τους όσο και κατά τη λειτουργία τους. Οι παράγοντες αυτοί αποτελούν τις απώλειες που υπάρχουν και πρέπει να ληφθούν υπόψη προκειμένου να γίνει πλήρως κατανοητή η λειτουργία τους. Οι απώλειες αυτές αποτελούν το θέμα του τρίτου κεφαλαίου της εργασίας. Ενδεικτικά αναφέρεται ότι υπάρχουν απώλειες λόγω των συνδέσεων, των καλωδίων, των εξαρτημάτων αλλά και λόγω της φύσης της προσπίπτουσας ακτινοβολίας. Ειδικά το είδος της προσπίπτουσας ακτινοβολίας επηρεάζει το βαθμό απόδοσης των πάνελ. Αυτό είναι και το αντικείμενο του τέταρτου κεφαλαίου.

Ακολουθεί το πέμπτο κεφάλαιο όπου παρουσιάζεται ένας σύντομος οδηγός χρήσης του λογισμικού που χρησιμοποιήθηκε στην εργασία.

Το έκτο κεφάλαιο αποτελεί το κύριο μέρος της εργασίας. Σε αυτό το κεφάλαιο παρουσιάζονται τα πέντε διαφορετικά σενάρια μελέτης ενός φωτοβολταϊκού πάρκου ισχύος 500kW και το ίδιο γίνεται για πάρκο ισχύος 1MW, ήτοι δέκα σενάρια συνολικά. Η μελέτες πραγματοποιήθηκαν μέσω του λογισμικού PVSyst. Η πρώτη είναι με σταθερές βάσεις, η δεύτερη με σταθερές πάλι βάσεις με αλλαγή κλίσης χειμώνα-καλοκαίρι, η τρίτη με ιχνηλάτες, η τέταρτη με ιχνηλάτες με οριζόντιο άξονα και η πέμπτη με ιχνηλάτες με κάθετο άξονα.

Στο έβδομο κεφάλαιο πραγματοποιείται μια τεχνοοικονομική μελέτη και των δύο συστημάτων (πάρκο ισχύος 500kW και πάρκο ισχύος 1MW) για την περίπτωση του κάθετου άξονα με ιχνηλάτες που αποδείχθηκε η αποδοτικότερη. Τα αποτελέσματα δείχνουν ότι πρόκειται για μια κερδοφόρα επένδυση με απόσβεση ιδίων κεφαλαίων και κερδοφορία από τον πέμπτο κιόλας χρόνο.

ΠΕΡΙΕΧΟΜΕΝΑ

ΠΙΝΑΚΑΣ ΕΙΚΟΝΩΝΧ
ΠΙΝΑΚΑΣ ΣΧΗΜΑΤΩΝΧ
ΠΙΝΑΚΑΣ ΔΙΑΓΡΑΜΜΑΤΩΝΧΙ
ΠΙΝΑΚΑΣ ΠΙΝΑΚΩΝΧΙΙΙ
1 ΕΙΣΑΓΩΓΗ
1.1 Ιστορία και ανάπτυξη των φωτοβολταΐκών1
1.2 Ηλιακή ενέργεια το 18001
1.3 Ηλιακή ενέργεια στη δεκαετία του 19001
1.4 Ηλιακή ενέργεια τη δεκαετία του 20003
1.5 Το μέλλον της ηλιακής ενέργειας5
2. ΤΡΟΠΟΙ ΥΠΟΣΤΥΛΩΣΗΣ ΤΩΝ ΦΩΤΟΒΟΛΤΑΙΚΏΝ ΠΑΝΕΛ
2.1 Ιχνηλάτες ^[4] 6
2.1.1 Ιχνηλάτες μονού άξονα6
2.1.2 Πλεονεκτήματα του ιχνηλάτη μονού άξονα
2.1.3 Οριζόντιος ηλιακός ανιχνευτής μονού άξονα (Horizontal Single-Axis Solar Tracker -HSAT)
2.1.4 Οριζόντιος κεκλιμένος Ηλιακός Ιχνηλάτης Μονού Άξονα (Horizontal Tilted Single-Axis Solar Tracker - HTSAT)8
2.1.5 Κατακόρυφος ηλιακός ανιχνευτής μονού άξονα (Vertical Single-Axis Solar Tracker -VSAT)9
2.1.6 Ηλιακός Ιχνηλάτης Μονού Άξονα με Κατακόρυφη Κλίση (Vertical-Tilted Single-Axis Solar Tracker - VTSAT)9

2.1	1.7	Ιχνηλάτες Διπλού Άξονα[4]	10
2.1	1.8	Αρχή λειτουργίας ιχνηλάτη διπλού άξονα	10
2.1	1.9	Πλεονεκτήματα και μειονεκτήματα	11
2.1	1.10	Ενεργοί Ιχνηλάτες και Παθητικοί Ιχνηλάτες	11
2.1	1.11	Ενεργοί ηλιακοί ιχνηλάτες	11
2.1	1.12	Παθητικοί Ηλιακοί Ιχνηλάτες	11
2.1	1.13	Ολογραφικός Ιχνηλάτης	12
2.1	1.14	Οφέλη διατάξεων ιχνηλατών[3]	12
2.2	Δομ	ιές σταθερής κλίσης [3]	12
2.2	2.1	Στήριξη με Σταθερή Γωνία Κλίσης του Συλλέκτη [5]	12
2.2	2.2	Στήριξη με Εποχιακή Ρύθμιση της Κλίσης του Συλλέκτη :	14
2.2	2.3	Παρατηρήσεις για την τοποθέτηση των συλλεκτών με ρυθμιζόμενη κ 15	:λίση
2.2	2.4	Οφέλη από τις σταθερές κατασκευές	15
2.3	Συσ	τήματα Ανατολής-Δύσης[5]	16
2.3	3.1	Πλεονεκτήματα των συστημάτων ανατολής - δύσης	17
2.3	3.2	Μειονεκτήματα των συστημάτων ανατολής - δύσης	17
3. ΑΠΩ	2ΛEIE	ΕΣ ΗΛΙΑΚΩΝ ΦΩΤΟΒΟΛΤΑΪΚΩΝ ΣΥΣΤΗΜΑΤΩΝ	19
3.1 φωτα	Επί οβολτ	δραση της σκίασης σε σειρά και παράλληλα συνδεδεμένες ηλι αϊκές μονάδες	ακές 22
3.2	Λύσ	σεις σκίασης ηλιακών πάνελ	22
3.2	2.1	Δίοδοι παράκαμψης	22
3.2	2.2	Ηλιακά πάνελ με ενσωματωμένους μικρο-μετατροπείς	23
3.3	Η ει	πίδραση της σκόνης στην απόδοση του ηλιακού πάνελ	24
3.4	Οπι	τικές απώλειες σε συστοιχίες ηλιακών κυψελών	24
3.5	Φαα	σματική Απόκριση Ηλιακών Κυψελών	25
3.6	Απι	ώλεια ΦΒ λόγω επιπέδου ακτινοβολίας	25
3.7	Επί	δραση της θερμοκρασίας στην απόδοση των ηλιακών πάνελ	25

3.8 Ανακολουθία ηλιακών συλλεκτών – Απώλειες ανακολουθίας στη μονάδα ηλιακής φωτοβολταϊκής μονάδας26
3.9 Απώλειες καλωδίου DC σε Φ/Β συστήματα
3.10 Απώλειες ηλιακού μετατροπέα
3.11 Απώλειες καλωδίων AC σε ηλιακά συστήματα
3.12 Άλλες Απώλειες Φ/Β συστήματος
3.13 Προσέγγιση για τη μείωση των απωλειών σε ένα έργο ηλιακής φωτοβολταϊκής ενέργειας
3.14 Τρόποι βελτίωσης της απόδοσης των ηλιακών πάνελ
3.14.1 Αυτόματοι Ηλιακοί Ιχνηλάτες
3.14.2 Ανακλαστικοί καθρέφτες για τη βελτίωση της απόδοσης των ηλιακών πάνελ 29
4. ΑΠΩΛΕΙΕΣ ΣΤΑ ΦΩΤΟΒΟΛΤΑΪΚΑ ΠΑΝΕΛ
4.1 Τα είδη της προσπίπτουσας ακτινοβολίας
4.1.1 Άμεση κανονική ακτινοβολία (Direct Normal IrradianceDNI)
4.1.2 Διάχυτη οριζόντια ακτινοβολία (Diffuse Horizontal Irradiance - DHI) 31
4.1.3 Η Παγκόσμια Οριζόντια Ακτινοβολία (GHI)
4.2 Τα είδη απωλειών στα ΦΒ πάνελ
5. ΟΔΗΓΟΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ PVSyst
6. ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΜΕΛΕΤΗΣ
6.1 Έλεγχος περιθωρίου απορρόφησης ισχύος διασυνδεμένου συστήματος στην περιοχή εγκατάστασης του ΦΒ πάρκου47
6.2 Οι παράμετροι της εγκατάστασης ισχύος 500kW
 6.3 Παρουσίαση των 5 διαφορετικών σεναρίων για την εγκατάσταση των 500kW 50
6.3.1 Σενάριο 1: Σταθερές βάσεις με γωνία κλίσης 30º
6.3.2 Σενάριο 2: Σταθερές βάσεις με αλλαγή γωνίας κλίσης χειμώνα - καλοκαίρι
6.3.3 Σενάριο 3: Κινητές βάσεις (ιχνηλάτες)60
6.3.4 Σενάριο 4: Ιχνηλάτες στον οριζόντιο άξονα κίνησης

	6.3	8.5	Σενάριο 5:Ιχνηλάτες με κάθετο άξονα κίνησης	68
	6.4	Σύγ	κριση και σχολιασμός αποτελεσμάτων	72
	6.5	01	παράμετροι της εγκατάστασης ισχύος 1MW	73
	6.6	Πα	οουσίαση των 5 διαφορετικών σεναρίων για την εγκατάσταση του 1MW	74
	6.6	5.1	Σενάριο 1: Σταθερές βάσεις με γωνία κλίσης 30º	74
	6.6 ка	δ.2 ∖οκα	Σενάριο 2: Σταθερές βάσεις με αλλαγή γωνίας κλίσης χειμώνα ίρι	 79
	6.6	6.3	Σενάριο 3: Κινητές βάσεις (ιχνηλάτες)	83
	6.6	6.4	Σενάριο 4: Ιχνηλάτες στον οριζόντιο άξονα κίνησης	87
	6.6	5.5	Σενάριο 5: Ιχνηλάτες με κάθετο άξονα κίνησης	91
	6.7	Σύγ	νκριση και σχολιασμός αποτελεσμάτων	95
7	. TEXI	NOC		96
	7.1 για τι	Ετή γ εγ	ισια έσοδα από τη διάθεση της ηλεκτρικής ενέργειας στο Ελληνικό Δίκτ κατάσταση 500kW	гио 96
	7.2	Kóc	στος αρχικής εγκατάστασης και ετήσιας συντήρησης	97
	7.3	Χρά	όνος απόσβεσης αρχικής επένδυσης	98
	7.3	8.1	Δάνεια Σταθερού Χρεολυσίου	99
	7.3	8.2	Αποσβέσεις 1	01
	7.3	8.3	Ετήσια έσοδα από την παραγωγή ηλεκτρικής ενέργειας1	01
	7.4 για τι	Ετή γε γ	ισια έσοδα από τη διάθεση της ηλεκτρικής ενέργειας στο Ελληνικό Δίκτ κατάσταση του 1MW	ruo 06
	7.5	Kóc	στος αρχικής εγκατάστασης και ετήσιας συντήρησης1	06
	7.6	Χρά	όνος απόσβεσης αρχικής επένδυσης1	08
	7.6	5.1	Αποσβέσεις1	09
	7.6	6.2	Ετήσια έσοδα από την παραγωγή ηλεκτρικής ενέργειας1	09
8	. ANA	ΣΚΟ	ΠΟΗΣΗ – ΣΥΜΠΕΡΑΣΜΑΤΑ1	15
в	ΙΒΛΙΟ	ГРА	ФІА 1	18

ΠΙΝΑΚΑΣ ΕΙΚΟΝΩΝ

Εικόνα 1.1:Δι	αφήμιση Bell Solar Battery (Πηγή: τεύχος 1956 του περιοδικού Look) 3
Εικόνα 1.2	Τύποι ηλιακών συλλεκτών4
Εικόνα 2.1 (https://www.r detailHCFmx\	Ηλιακός Ιχνηλάτης Μονού Άξονα με Κατακόρυφη Κλίση nade-in-china.com/showroom/liaodanny/product- wLDCnhb/China-Tilted-Single-Axis-Tracking-System.html)
Εικόνα 2.2	Διάταξη ανατολής-δύσης σε ΦΒ πάρκο (https://sunshine-energy.gr/) 16
Εικόνα 2.3	Συστήματα ανατολής – δύσης σε ταράτσα (https://sunshine-energy.gr/)
Εικόνα 3.1	Δίοδοι παράκαμψης
Εικόνα 3.2	Υβριδικό φωτοβολταϊκό-θερμικό ηλιακό πάνελ
Εικόνα 6.1 μελέτης	Αναζήτηση διαθεσιμότητας στον δήμο που ανήκει η έκταση της
Εικόνα 6.2	Εμφάνιση αποτελεσμάτων αναζήτησης

ΠΙΝΑΚΑΣ ΣΧΗΜΑΤΩΝ

Σχήμα 1.1 2.402.662)	Φωτοκύτταρο	PN	πυριτίς	ου-EMF(Πη	γή: Ευρ	εσιτεχνία	НПА	αρ. 2
Σχήμα 2.1 (https://sinovo	Ιχνηλάτης ltaics.com/lear	µ ning-ce	ε enter/csp	παρακολού ο/)	ύθηση	μονού	ά	ξονα 7
Σχήμα 2.2 (https://sinovo	Οριζόντιος ltaics.com/learı	r ning-ce	ηλιακός enter/csp	ανιχν c/)	′ευτής 	μονού	ά8	ξονα 8
Σχήμα 2.3 (https://taiyang	Οριζόντιος gnews.info/tech	κεκλιμ nolog	ένος //classifi	Ηλιακός cation-of-s	Ιχνηλάτη ingle-axis·	ς Movo ·trackers/)	ού Άδ	ξονα 8

Σχήμα 2.4 https://sinov	Κατακόρυφα oltaics.com/learn/	ος ηλι iing-center/	ακός /csp/	ανιχνευτή	ς μονού	άξονα 9
Σχήμα 2.5 center/csp/)	ιχνηλάτες)	διπλού	άξονα	(https://s	sinovoltaics.c	om/learning- 10
Σχήμα 2.6 (https://sun	Τοποθέτηση shine-energy.gr/)	του συλλ	λέκτη με	βάση τ	ο γεωγραφ	ικό πλάτος 14
Σχήμα 2.7 (https://sun	Τοποθέτηση shine-energy.gr/)	του συλλ	νέκτη με	βάση τη	ιν εποχή τ	ου χρόνου 15
Σχήμα 4. (https://www nd_Oriental Site_Solar	1 Τα τρία v.researchgate.ne tion_of_an_On- Photovoltaic_Ene	είδη ακ et/publicatio	τινοβολίας on/351752	; πάνω 520_On_th	στο ηλια ne_Optimal_1 abab%27s_F	ικό πάνελ Γilt_Angle_a Rural Electri
fication/figu	res?lo=1)				abaii /0275_1	
Σχήμα 6.1	Διασύνδεση του	πάρκου με	ε το δίκτυο	ηλεκτρικής	ς ενέργειας	
Σχήμα 6.2	Διασύνδεση του	πάρκου με	ε το δίκτυο	ηλεκτρικής	ς ενέργειας(1	MW) 73

ΠΙΝΑΚΑΣ ΔΙΑΓΡΑΜΜΑΤΩΝ

Διάγραμμα 6.7 Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για κινητές βάσεις(500kW)62

Διάγραμμα 6.11 Εγχεόμενη ενέργεια σε συνάρτηση με την άμεση ακτινοβολία το πάνελ για κινητές βάσεις οριζόντιου άξονα (500kW)......67

Διάγραμμα 6.12 Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για κινητές βάσεις οριζόντιου άξονα(500kW)......67

Διάγραμμα 6.22 Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για κινητές βάσεις(1MW)85
Διάγραμμα 6.23 Εγχεόμενη ενέργεια σε συνάρτηση με την άμεση ακτινοβολία το πάνελ για κινητές βάσεις(1MW)
Διάγραμμα 6.24 Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για κινητές βάσεις(1MW)
Διάγραμμα 6.25 Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για κινητές βάσεις οριζόντιου άξονα(1MW)
Διάγραμμα 6.26 Εγχεόμενη ενέργεια σε συνάρτηση με την άμεση ακτινοβολία το πάνελ για κινητές βάσεις οριζόντιου άξονα(1MW)
Διάγραμμα 6.27 Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για κινητές βάσεις οριζόντιου άξονα(1MW)90
Διάγραμμα 6.28 Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για κινητές βάσεις κάθετου άξονα(1MW)
Διάγραμμα 6.29 Εγχεόμενη ενέργεια σε συνάρτηση με την άμεση ακτινοβολία το πάνελ για κινητές βάσεις κάθετου άξονα(1MW)
Διάγραμμα 6.30 Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για κινητές βάσεις κάθετου άξονα (1MW)

ΠΙΝΑΚΑΣ ΠΙΝΑΚΩΝ

Πίνακας 6-1	Τα ηλεκτρικά χαρακτηριστικά της μελέτης 500kW
Πίνακας 6-2	Τα δεδομένα της μελέτης των 500kW για σταθερές βάσεις με κλίση
30º	50
Πίνακας 6-3	Ορισμός της γωνίας κλίσης για σταθερές βάσεις (500kW) 51
Πίνακας 6-4	Παραγόμενη ηλεκτρική ενέργεια ετησίως για σταθερές βάσεις και κλίση
30º(500kW)	52
Πίνακας 6-5	Τα δεδομένα της μελέτης για τη μελέτη για σταθερές βάσεις
μεταβλητής κλ	\ίσης χειμώνα –καλοκαίρι (500kW)56

Πίνακας 6-6	Ορισμός της γωνίας κλίσης για σταθερές βάσεις μεταβλητής κλίσης
χειμώνα -καλοκ	αίρι (500kW)
Πίνακας 6-7	Παραγόμενη ηλεκτρική ενέργεια ετησίως για σταθερές βάσεις
μεταβλητής κλία	της χειμώνα –καλοκαίρι (500kW)57
Πίνακας 6-8 Τ	α δεδομένα της μελέτης για κινητές βάσεις (500kW)60
Πίνακας 6-9 C	ορισμός της γωνίας κλίσης για κινητές βάσεις(500kW)
Πίνακας 6-10	Παραγόμενη ηλεκτρική ενέργεια ετησίως για κινητές βάσεις(500kW)
Πίνακας 6-11	Τα δεδομένα της μελέτης για κινητές βάσεις οριζόντιου άξονα 64
Πίνακας 6-12	Ορισμός της γωνίας κλίσης για κινητές βάσεις οριζόντιου
άξονα(500kW)	
Πίνακας 6-13	Παραγόμενη ηλεκτρική ενέργεια ετησίως για κινητές βάσεις
οριζόντιου άξον	α(500kW)
Πίνακας 6-14	Τα δεδομένα της μελέτης για κινητές βάσεις κάθετου άξονα(500kW)
Πίνακας 6-15	Ορισμός της γωνίας κλίσης για κινητές βάσεις κάθετου
άξονα(500kW)	
Πίνακας 6-16	Παραγόμενη ηλεκτρική ενέργεια ετησίως για κινητές βάσεις κάθετου
άξονα(500kW)	
Πίνακας 6-17	Τα ηλεκτρικά χαρακτηριστικά της μελέτης (1MW)73
Πίνακας 6-18	Τα δεδομένα της μελέτης για σταθερές βάσεις με κλίση 30º
Πίνακας 6-19	Ορισμός της γωνίας κλίσης για σταθερές βάσεις
Πίνακας 6-20	Παραγόμενη ηλεκτρική ενέργεια ετησίως για σταθερές βάσεις και
κλίση 30º (1MW)
Πίνακας 6-21	Τα δεδομένα της μελέτης για τη μελέτη για σταθερές βάσεις
μεταβλητής κλία	της χειμώνα -καλοκαίρι(1MW)79
Πίνακας 6-22	Ορισμός της γωνίας κλίσης για σταθερές βάσεις μεταβλητής κλίσης
χειμώνα -καλοκ	αίρι(1MW)
Πίνακας 6-23	Παραγόμενη ηλεκτρική ενέργεια ετησίως για σταθερές βάσεις
μεταβλητής κλία	της χειμώνα -καλοκαίρι(1MW)80

Πίνακας 6-24	Τα δεδομένα της μελέτης για κινητές βάσεις(1MW)8	3
Πίνακας 6-25	Ορισμός της γωνίας κλίσης για κινητές βάσεις(1MW)8	3
Πίνακας 6-26	Παραγόμενη ηλεκτρική ενέργεια ετησίως για κινητές βάσεις(1MW). 	4
Πίνακας 6-27	Τα δεδομένα της μελέτης για κινητές βάσεις οριζόντιου άξονα(1MW) 8	7
Πίνακας 6-28 άξονα(1MW)	Ορισμός της γωνίας κλίσης για κινητές βάσεις οριζόντιο 8	บ 7
Πίνακας 6-29 οριζόντιου άξα	Παραγόμενη ηλεκτρική ενέργεια ετησίως για κινητές βάσει ονα(1MW)	ς 8
Πίνακας 6-30	Τα δεδομένα της μελέτης για κινητές βάσεις κάθετου άξονα(1MW)9	1
Πίνακας 6-31	Ορισμός της γωνίας κλίσης για κινητές βάσεις κάθετου άξονα(1MW 9) 1
Πίνακας 6-32 άξονα(1MW)	Παραγόμενη ηλεκτρική ενέργεια ετησίως για κινητές βάσεις κάθετο 92	บ 2
Πίνακας 7-1	Ετήσια έσοδα των εγκαταστάσεων9	6
Πίνακας 7-2	Κόστος αρχικής εγκατάστασης9	7
Πίνακας 7-3	Κόστος ετήσιας συντήρησης98	8
Πίνακας 7-4	Πίνακας εξόφλησης δανείου100	0
Πίνακας 7-5	Έσοδα από την παραγόμενη ηλεκτρική ενέργεια	1
Πίνακας 7-6	Οικονομικές απολαβές για την εγκατάσταση των 500kW 103	3
Πίνακας 7-7	Ετήσια έσοδα των εγκαταστάσεων(1MW)	6
Πίνακας 7-8	Κόστος αρχικής εγκατάστασης100	6
Πίνακας 7-9	Κόστος ετήσιας συντήρησης10	7
Πίνακας 7-10	Πίνακας εξόφλησης δανείου10	8
Πίνακας 7-5	Έσοδα από την παραγόμενη ηλεκτρική ενέργεια	9
Πίνακας 7-6	Οικονομικές απολαβές	2

<u>ΕΙΣΑΓΩΓΗ</u>

1.1 Ιστορία και ανάπτυξη των φωτοβολταϊκών

Η πρώτη κιόλας ανακάλυψη του ηλιακού κυττάρου σηματοδότησε την αρχή της αλλαγής στην παραγωγή ενέργειας. Αυτή η αλλαγή θα επαναλαμβανόταν ξανά και ξανά για να σημειωθεί νέα πρόοδος στον τομέα της ηλιακής ενέργειας από ερευνητές και συνεχίζεται ακόμη. Η ιστορία της ηλιακής ενέργειας είναι μια ιστορία καινοτομίας που ξεκίνησε στις αρχές του 19ου αιώνα [1]

1.2 Ηλιακή ενέργεια το 1800

Το 1839, ο Γάλλος επιστήμονας Edmond Becquerel ανακάλυψε το φωτοβολταϊκό φαινόμενο σε νεαρή ηλικία 19 ετών. Συνειδητοποίησε όταν τα ηλεκτρόνια ήταν σε διεγερμένη κατάσταση σε μια ζώνη αγωγιμότητας, μπορούσαν να κινηθούν ελεύθερα μέσα από ένα υλικό, δημιουργώντας έτσι ένα ρεύμα. Αλλά αυτό δεν αναγνωρίστηκε ευρέως έως ότου ο Αϊνστάιν έγραψε μια εργασία για τη δύναμη της ηλιακής ενέργειας για την οποία τελικά έλαβε το βραβείο Νόμπελ το 1922. Το πρώτο ηλιακό πάνελ εφευρέθηκε από τον Τσαρλς Φριτς το 1883, ο οποίος επικάλυψε ένα λεπτό στρώμα σεληνίου με ένα εξαιρετικά λεπτό στρώμα χρυσού. Οι κυψέλες που προέκυψαν είχαν ηλεκτρική απόδοση μετατροπής μόνο περίπου 1%. Αυτή η εφεύρεση οδήγησε στην έναρξη ενός κινήματος για την παραγωγή ηλιακής ενέργειας.

1.3 Ηλιακή ενέργεια στη δεκαετία του 1900

Η ηλιακή εποχή ξεκίνησε το 1950 όταν οι επιστήμονες του εργαστηρίου Bell εστίασαν στις εξελίξεις των φωτοβολταϊκών (PV) και άρχισαν να χρησιμοποιούν πυρίτιο για την παραγωγή ηλιακών κυψελών. Αυτή η ανακάλυψη πιστώνεται στους Daryl Chapin, Calvin Fuller και Gerald Pearson που παρήγαγαν αποτελεσματικότητα μόνο 4%. Αυτή η σημαντική ανακάλυψη οδήγησε την κυβέρνηση των ΗΠΑ να διαθέσει περισσότερα χρήματα στην τεχνολογία των ηλιακών κυψελών. Στις

δεκαετίες του 1960 και του 1970 η παραγωγή ηλιακών συλλεκτών κατέστη δυνατή, αλλά το μειονέκτημα ήταν ότι ήταν πολύ ακριβό για τους κύριους καταναλωτές. Ωστόσο, οι επιστήμονες συνέχισαν να αναπτύσσουν τεχνολογία ηλιακής ενέργειας για να μειώσουν το κόστος. Με την άνοδο των ημιαγωγών το 1941, ο Russel S Ohl περιέγραψε μια διαδικασία σχηματισμού πλινθωμάτων πυριτίου που οδήγησε στην πρώτη κυψέλη σύνδεσης PN. Ο Ohl έκοψε ένα τμήμα από το πλινθίο συμπεριλαμβανομένων των τμημάτων κορυφής, φραγμού και κάτω, και προσάρτησε ηλεκτρόδια στο πάνω και στο κάτω μέρος, αποδίδοντας το πρώτο ηλιακό στοιχείο πυριτίου. Το παρακάτω σχήμα αντιπροσωπεύει την πρώτη κατοχυρωμένη με δίπλωμα ευρεσιτεχνίας κυψέλη πυριτίου PN -EMF (ηλεκτροκινητική δύναμη σύνδεσης PN).

Σχήμα 1.1 Φωτοκύτταρο ΡΝ πυριτίου-ΕΜΓ(Πηγή: Ευρεσιτεχνία ΗΠΑ αρ. 2.402.662)

Η παρακάτω εικόνα είναι μια φωτογραφία διαφήμισης που εμφανίστηκε στο τεύχος του 1956 του περιοδικού Look, επιδεικνύοντας την «Ηλιακή μπαταρία Bell» στο αμερικανικό κοινό.[1]

Εικόνα 1.1:Διαφήμιση Bell Solar Battery (Πηγή: τεύχος 1956 του περιοδικού Look)

1.4 Ηλιακή ενέργεια τη δεκαετία του 2000

Στη δεκαετία του 1950 ο κόσμος είχε λιγότερο από ένα βατ ηλιακές κυψέλες που τροφοδοτούσαν ηλεκτρικό εξοπλισμό. Γρήγορα στον 21ο αιώνα, 50 χρόνια συνεχούς ανακάλυψης και ανάπτυξης πυριτίου και άλλων φωτοβολταϊκών υλικών και συνεχίζονται, σήμερα τα ηλιακά πάνελ παρέχουν ηλεκτρική ενέργεια σε εκατομμύρια σπίτια σε όλο τον κόσμο, τροφοδοτούν κτίρια, δορυφόρους και παρέχουν καθαρή ενέργεια σε όλο τον κόσμο.

Η παγκόσμια εγκατεστημένη ισχύς ηλιακής ενέργειας εκτιμάται ότι είναι περίπου 728 GW και εκτιμάται ότι θα αυξηθεί στα 1.645 GW το 2026. Η ηλιακή ενέργεια έχει παρουσιάσει την πιο ταχεία μείωση κόστους μεταξύ των ενεργειακών τεχνολογιών. Η τιμή των φωτοβολταϊκών κυψελών πυριτίου τη δεκαετία του 1950 ήταν 76 US\$/Watt, η οποία μειώθηκε σημαντικά σε 0,20 US\$/Watt το 2021. Από το 2000 έως το 2019 οι τιμές μειώθηκαν σημαντικά, αλλά οι μειώσεις άρχισαν να ισοπεδώνονται μετά από αυτό. Το παρακάτω διάγραμμα δείχνει την τάση μείωσης του κόστους.

\$2.00 per watt

Διάγραμμα 1.1:Τάση μείωσης του κόστους. (Πηγή: PVinsights)

Τα μεγαλύτερα εργοστάσια, η χρήση αυτοματισμού και πιο αποτελεσματικές μέθοδοι παραγωγής έχουν προσφέρει οικονομίες κλίμακας, χαμηλότερο κόστος εργασίας και λιγότερα απόβλητα υλικών για τον ηλιακό τομέα. Το μέσο κόστος ενός ηλιακού πάνελ μειώθηκε κατά 90% από το 2010 έως το 2020.

Οι κύριοι τύποι ηλιακών συλλεκτών που διατίθενται σήμερα στην αγορά είναι τα μονοκρυσταλλικά, τα πολυκρυσταλλικά και τα πάνελ λεπτής μεμβράνης. Τα πάνελ λεπτής μεμβράνης περιλαμβάνουν κύτταρα κατασκευασμένα από διαφορετικά υλικά, σε αντίθεση με τα ηλιακά κύτταρα πυριτίου. Το καθένα έχει τα δικά του πλεονεκτήματα και μειονεκτήματα. [1]

1.5 Το μέλλον της ηλιακής ενέργειας

Η ηλιακή ενέργεια έχει προχωρήσει με ρυθμό που είναι εκπληκτικό ακόμη και για τους ειδικούς στον τομέα και τώρα υπόσχεται να διαδραματίσει εξέχοντα ρόλο στη συνεχιζόμενη ενεργειακή μετάβαση. Σύμφωνα με τα δεδομένα της βιομηχανίας ηλιακής ενέργειας (SEIA) για την τελευταία δεκαετία, η παγκόσμια βιομηχανία φωτοβολταϊκών αναπτύσσεται με μέσο ετήσιο ρυθμό σύνθετου μεγαλύτερου από 35%. Είναι βέβαιο ότι η εγκατάσταση φωτοβολταϊκών θα συνεχίσει να αυξάνεται καθώς το παγκόσμιο χαρτοφυλάκιο ενέργειας μεταβαίνει περισσότερο προς τις ανανεώσιμες πηγές ενέργειας.

Η αύξηση της ισχύος της μονάδας των πάνελ από 250 W σε 500 W την τελευταία δεκαετία είχε ως αποτέλεσμα τη μείωση της σχετικής συνεισφοράς του κόστους της μονάδας στο συνολικό κόστος του φωτοβολταϊκού συστήματος. Τα ηλιακά κύτταρα πυριτίου εξακολουθούν να κυριαρχούν στην αγορά και θα χρειαστεί λίγος χρόνος για να αποκτήσουν κυριαρχία στην αγορά τα ηλιακά κύτταρα άλλης γενιάς.

Μία από τις βασικές προκλήσεις είναι να μειωθεί το κόστος και να βελτιωθεί η απόδοση, αυτό μπορεί να αντιμετωπιστεί με την εξεύρεση νέων ανταγωνιστικών μεθόδων κατασκευής ηλιακών μονάδων πλακιδίων πυριτίου στην αγορά με χαμηλότερο κόστος. Εστιάζοντας στην κρυσταλλική τεχνολογία φωτοβολταϊκών που βασίζεται σε πυρίτιο, αυτή η τυποποιημένη βιομηχανία έχει μια απότομη καμπύλη εκμάθησης και είναι σε καλή θέση για να ανταποκριθεί στην πρόκληση της παραγωγής πολλών τεραβάτ ενέργειας. Φτάνουμε επίσης στο θεωρητικό όριο των ηλιακών κυψελών μονής διασταύρωσης.

Τελικά, οι συνδυασμένες τεχνολογίες μπορούν να αποτελέσουν μια λύση για την αντιμετώπιση αυτού του προβλήματος, ωστόσο απαιτείται ακόμη σημαντική έρευνα για να καταστεί δυνατό αυτό με χαμηλό κόστος για τη μαζική αγορά. Δεδομένου του γεγονότος ότι αυτή η τεχνολογία είναι πάνω από πενήντα ετών, απαιτείται περισσότερη έρευνα και ανάπτυξη για την πλοήγηση σε διάφορες δυνατότητες[1].

<u>2. ΤΡΟΠΟΙ ΥΠΟΣΤΥΛΩΣΗΣ ΤΩΝ ΦΩΤΟΒΟΛΤΑΙΚΏΝ</u> <u>ΠΑΝΕΛ</u>

Οι βάσεις στήριξης των ηλιακών φωτοβολταϊκών πάνελ μπορούν να είναι σταθερές ή μπορούν να περιλαμβάνουν έναν κινητήρα για αλλαγή του προσανατολισμού των μονάδων για την παρακολούθηση/ιχνηλάτηση του ήλιου. Υπάρχουν πλεονεκτήματα και μειονεκτήματα σε κάθε σχέδιο ανάλογα με το έργο.

2.1 Ιχνηλάτες^[4]

Τα ηλιακά συστήματα παρακολούθησης μπορούν να ταξινομηθούν ανάλογα με τον τρόπο κίνησής τους. Η επιφάνεια των φωτοβολταϊκών μπορεί να περιστραφεί/γέρνει γύρω από άξονες για να δημιουργήσει μια σωστή γωνία που μπορεί να τα βοηθήσει να λάβουν το μέγιστο ηλιακό φως.

2.1.1 Ιχνηλάτες μονού άξονα

Όταν η κίνηση ή η ρύθμιση της επιφάνειας του φωτοβολταϊκού πραγματοποιείται με περιστροφή γύρω από έναν άξονα, ονομάζεται παρακολούθηση μονού άξονα. Όταν η κίνηση της φωτοβολταϊκής επιφάνειας συμβαίνει γύρω από δύο άξονες ταυτόχρονα, ονομάζεται παρακολούθηση διπλού άξονα

Σχήμα 2.1 Ιχνηλάτης με παρακολούθηση μονού άξονα (<u>https://sinovoltaics.com/learning-</u> <u>center/csp/</u>)

2.1.2 Πλεονεκτήματα του ιχνηλάτη μονού άξονα

Τα πλεονεκτήματα των ιχνηλατών μονού άξονα περιλαμβάνουν:

- Οι ιχνηλάτες μονού άξονα κινούνται συνήθως από τα ανατολικά προς τα δυτικά και ακολουθούν την κατεύθυνση του Ήλιου.
- Οι ιχνηλάτες μονού άξονα είναι φθηνοί, πολύ απλοί στη ρύθμιση και λειτουργούν με χαμηλό κόστος.
- Είναι πιο αξιόπιστοι από τους ιχνηλάτες διπλού άξονα.
- Ο μονός άξονας έχει μεγαλύτερη διάρκεια ζωής από τους ιχνηλάτες διπλού άξονα.
- Οι ιχνηλάτες μονού άξονα ταιριάζουν σε εταιρείες που θέλουν μια επιλογή χαμηλού κόστους.
- Οι ιχνηλάτες μονού άξονα ταιριάζουν επίσης σε περιοχές με λιγότερο ήλιο.
- Ο ιχνηλάτης μονού άξονα έχει καλύτερη απόδοση σε σχέση με ένα ηλιακό πάνελ σε σταθερή μορφή. Η αποτελεσματικότητα του ηλιακού ανιχνευτή μονού άξονα πάνω από το σταθερό πάνελ στήριξης ηλιακής παρακολούθησης είναι 32,17%.

Οι διάφοροι τύποι ανιχνευτών μονού άξονα επεξηγούνται παρακάτω:

2.1.3 Οριζόντιος ηλιακός ανιχνευτής μονού άξονα (Horizontal Single-Axis Solar Tracker -HSAT)

Το HSAT περιστρέφεται από ανατολή προς δύση καθ' όλη τη διάρκεια της ημέρας σε σταθερό άξονα, ο οποίος είναι παράλληλος με το έδαφος, και θεωρείται ως η πιο οικονομική διαμόρφωση ιχνηλάτη σε πολλές εφαρμογές φωτοβολταϊκών. Η δομή HSAT τοποθετείται σε πολλά στηρίγματα κατά μήκος του περιστρεφόμενου άξονα, απαιτεί λιγότερο υλικό για κατασκευή και η οριζόντια διαμόρφωσή της προτιμάται περισσότερο σε σύγκριση με άλλες γεωμετρίες παρακολούθησης.

2.1.4 Οριζόντιος κεκλιμένος Ηλιακός Ιχνηλάτης Μονού Άξονα (Horizontal Tilted Single-Axis Solar Tracker - HTSAT)

To HTSAT είναι πολύ παρόμοιο με το HSAT, αλλά είναι εγκατεστημένο σε μια συγκεκριμένη κλίση. Είναι πιο περίπλοκοι από τους οριζόντιους ιχνηλάτες ενός άξονα και είναι ακριβοί. Απαιτούν τσιμεντένια βάση, προσθέτοντας στο συνολικό κόστος και δεν είναι εύκολο να επεκταθούν

Σχήμα 2.3 Οριζόντιος κεκλιμένος Ηλιακός Ιχνηλάτης Μονού Άξονα (https://taiyangnews.info/technology/classification-of-single-axis-trackers/)

2.1.5 Κατακόρυφος ηλιακός ανιχνευτής μονού άξονα (Vertical Single-Axis Solar Tracker -VSAT)

Αυτά τα συστήματα μπορούν να τοποθετηθούν σε προσανατολισμό Βορρά/Νότου ή Ανατολής/Δύσης για να ακολουθήσουν περισσότερη κίνηση «πάνω-κάτω» του ήλιου στον ουρανό. Αυτά εμφανίζονται συχνότερα σε τοποθεσίες μεγάλου υψομέτρου ή σε πιο ακραία γεωγραφικά πλάτη.

2.1.6 Ηλιακός Ιχνηλάτης Μονού Άξονα με Κατακόρυφη Κλίση (Vertical-Tilted Single-Axis Solar Tracker - VTSAT)

Αυτά είναι παρόμοια με τα HTSAT εκτός από το ότι η κλίση ευθυγραμμίζεται σε οριζόντια θέση και περιστρέφεται σε κατακόρυφο άξονα. Αυτοί οι ιχνηλάτες είναι καλύτεροι στην παραγωγή ενέργειας σε σύγκριση με τους οριζόντιους ιχνηλάτες. Ωστόσο, η κλίση τους υπόκειται σε αυξημένα φορτία ανέμου σε σύγκριση με τις οριζόντιες μονάδες. Επίσης, έχουν υψηλή δομική ζήτηση και απαιτούν επιπλέον σκυρόδεμα και χάλυβα για να χτίσουν μια ισχυρή βάση.

Εικόνα 2.1Ηλιακός Ιχνηλάτης Μονού Άξονα με Κατακόρυφη Κλίση (<u>https://www.made-in-</u> china.com/showroom/liaodanny/product-detailHCFmxwLDCnhb/China-Tilted-Single-Axis-Tracking-System.html)

2.1.7 Ιχνηλάτες Διπλού Άξονα[4]

Οι ιχνηλάτες διπλού άξονα έχουν έναν οριζόντιο και έναν κατακόρυφο άξονα, δηλαδή και τον άξονα ανατολής/δύσης και τον άξονα βορρά/νότου και έτσι μπορούν να παρακολουθούν ολόκληρη την κίνηση του ήλιου στον ουρανό. Αυτοί οι ιχνηλάτες έχουν επομένως τη δυνατότητα να μεγιστοποιήσουν τη συνολική απόδοση ισχύος προσανατολίζοντας τα πάνελ στο άμεσο ηλιακό φως για τον μέγιστο αριθμό ωρών την ημέρα. Ένα ηλιακό πάνελ διπλού άξονα παράγει έως και 40% περισσότερη ηλεκτρική ενέργεια από έναν στατικό τύπο, αλλά κοστίζει 100% περισσότερο και έχει μεγαλύτερο κόστος συντήρησης. Η ποσότητα ενέργειας που δαπανάται εξωτερικά για τον προσανατολισμό του ηλιακού πάνελ πρέπει να αφαιρεθεί από τη συνολική ποσότητα ενέργειας που παράγεται από τα πάνελ.

2.1.8 Αρχή λειτουργίας ιχνηλάτη διπλού άξονα

Υπάρχουν τρία μέσα αλλαγής της θέσης ενός ηλιακού ιχνηλάτη:

- <u>Χειροκίνητο</u> Υπάρχει προσωπικό που προσαρμόζει τη θέση του ηλιακού ιχνηλάτη σε διάφορες στιγμές της ημέρας. Αυτή η μέθοδος παρακολούθησης είναι οικονομικά βιώσιμη σε αναπτυσσόμενες χώρες όπου η τιμή της εργατοώρας είναι χαμηλή.
- Παθητικό- Ο ηλιακός ιχνηλάτης είναι εφοδιασμένος με έναν βολβό υγρού που όταν εκτίθεται στον ήλιο θερμαίνεται. Αυτό προκαλεί την εξάτμιση του υγρού. Αυτή η επέκταση όγκου ωθεί και γέρνει τον προσαρτημένο ηλιακό ιχνηλάτη προς τον ήλιο.
- Ενεργός Ηλεκτροκινητήρες ή υδραυλικοί κύλινδροι χρησιμοποιούνται για τη ρύθμιση της θέσης του ιχνηλάτη.

Σχήμα 2.5 ιχνηλάτες διπλού άξονα (https://sinovoltaics.com/learning-center/csp/)

2.1.9 Πλεονεκτήματα και μειονεκτήματα

Υπάρχουν ορισμένα πλεονεκτήματα και μειονεκτήματα του διπλού άξονα, γι' αυτό, ακόμη κι αν μπορούν να χρησιμοποιηθούν σε όλα τα γεωγραφικά πλάτη, αλλά και πάλι δεν έχουν βρει ευρεία εμπορική εφαρμογή. Τα πλεονεκτήματα των ανιχνευτών διπλού άξονα περιλαμβάνουν:

- Μπορεί να δώσει 40% περισσότερη ηλεκτρική ενέργεια από ένα μη κινούμενο ηλιακό πάνελ
- Υψηλότερος βαθμός ευελιξίας, επιτρέποντας υψηλότερη απόδοση ενέργειας τις ηλιόλουστες μέρες

Τα μειονεκτήματα των ανιχνευτών διπλού άξονα περιλαμβάνουν

- Τα πολλά κινούμενα μέρη καθιστούν πιο πιθανό τα εξαρτήματα να πάθουν βλάβη
- Μικρότερη διάρκεια ζωής και χαμηλότερη αξιοπιστία
- Πολύ δαπανηρό. Μπορεί να παράγει 40% περισσότερη ηλεκτρική ενέργεια σε σύγκριση με τα στατικά πάνελ αλλά είναι επίσης 100% πιο δαπανηρή.
- •

2.1.10 Ενεργοί Ιχνηλάτες και Παθητικοί Ιχνηλάτες

Οι φωτοβολταϊκοί ιχνηλάτες μπορούν να ταξινομηθούν σε ενεργούς και παθητικούς ανιχνευτές με βάση τα συστήματα κίνησης τους. Οι πιο συνηθισμένοι είναι οι ενεργοί ηλιακοί ιχνηλάτες, ενώ λιγότερο συνηθισμένοι είναι οι παθητικοί ηλιακοί ιχνηλάτες. Ως αποτέλεσμα των διαφορετικών σχεδίων τους, η απόδοση και το κόστος τους διαφέρουν επίσης.

2.1.11 Ενεργοί ηλιακοί ιχνηλάτες

Στους ενεργούς ιχνηλάτες παρέχεται ηλεκτρική ενέργεια για να κινούνται οι ενεργοποιητές τους. Αυτή η ενέργεια μπορεί ακόμη και να είναι μέρος της ενέργειας που συλλέγεται από το φωτοβολταϊκό σύστημα που οδηγούν. Τα συστήματα ενεργοποιητή μπορεί να αποτελούνται από κινητήρες και άλλες περίτεχνες μηχανικές συσκευές.

2.1.12 Παθητικοί Ηλιακοί Ιχνηλάτες

Οι παθητικοί ηλιακοί ιχνηλάτες παρακολουθούν επίσης τον ήλιο, αλλά το κάνουν χωρίς να απαιτούν εξωτερική πηγή ενέργειας. Τις περισσότερες φορές, η θερμότητα του ήλιου χρησιμοποιείται για να προκαλέσει διαστολή μιας σταθερής μάζας υλικού, π.χ. ενός αερίου χαμηλού σημείου βρασμού. Η διαστολή προκαλεί μια μηχανική κίνηση ενός ενεργοποιητή. Ένα ζεύγος ή περισσότεροι ενεργοποιητές είναι

τοποθετημένοι έτσι ώστε να επεκτείνονται διαφορικά ανάλογα με τον προσανατολισμό του ανιχνευτή ωφέλιμου φορτίου σε σχέση με τον ήλιο. Η Διαφορική επέκταση κάνει τον ιχνηλάτη να κινηθεί πιο κοντά στην κατεύθυνση του ήλιου. Κατά την ανατολή και τη δύση του ηλίου, όταν ουσιαστικά δεν υπάρχει ηλιακή ενέργεια για να οδηγήσει αυτή τη διάταξη, Συγκρατείται χειροκίνητα σε σχεδόν κατακόρυφη θέση με αυτο-απελευθερούμενο δέσιμο τη νύχτα, έτσι ώστε το ξημέρωμα, όταν παίρνει αρκετή διαφορική ενέργεια, να μπορεί να μετακινηθεί στη θέση του και στη συνέχεια να συνεχίσει να παρακολουθεί.

2.1.13 Ολογραφικός Ιχνηλάτης

Ο ολογραφικός ηλιακός ανιχνευτής είναι μια δυνατότητα που έχει αναλυθεί καλά αλλά δεν έχει εφαρμοστεί στην πράξη παρά μόνο σε εργαστηριακό επίπεδο. Αυτός ο τύπος ιχνηλάτη θα είναι σταθερός ανιχνευτής. Το φως από διαφορετικές γωνίες θα αντιμετωπιστεί από διαφορετικά ολογράμματα και θα μεταφερθεί στο ηλιακό κύτταρο. Δεδομένου ότι δεν εμπλέκεται καμία κίνηση, δεν υπάρχει ανάγκη για παροχή ρεύματος και ως εκ τούτου πρόκειται για μια μορφή παθητικού ιχνηλάτη.

2.1.14 Οφέλη διατάξεων ιχνηλατών[3]

Οι δομές ιχνηλάτη δημιουργούν υψηλότερη παραγωγή ενέργειας καθώς διατηρούν τα πάνελ στη βέλτιστη γωνία για να δέχονται τις περισσότερες ακτίνες του ήλιου κατά τη διάρκεια της ημέρας — που σημαίνει ότι για την ίδια μέγιστη ισχύ μια εγκατάσταση μπορεί να παράγει περισσότερη ενέργεια. Έχουν επίσης ένα συνολικό χαμηλότερο επίπεδο κόστους ηλεκτρικής ενέργειας, παρά το γεγονός ότι απαιτούν υψηλότερες αρχικές δαπάνες κεφαλαίου, καθώς η αυξημένη απόδοση μειώνει το κόστος της παραγόμενης ηλεκτρικής ενέργειας.

2.2 Δομές σταθερής κλίσης [3]

Μια δομή σταθερής κλίσης στρέφει τις γωνίες προς τον ισημερινό, επομένως η γωνία εξαρτάται από το γεωγραφικό πλάτος της τοποθεσίας. Τα πάνελ έχουν κλίση προς το νότο στο βόρειο ημισφαίριο και προς το βορρά στο νότιο ημισφαίριο.

2.2.1 Στήριξη με Σταθερή Γωνία Κλίσης του Συλλέκτη [5]

Είναι ο απλούστερος και οικονομικότερος τρόπος στήριξης που μπορεί να εφαρμοστεί για την τοποθέτηση συλλεκτών. Ο σχεδιασμός του συστήματος είναι αρκετά απλός καθώς στο μόνο που πρέπει να δοθεί προσοχή είναι η γωνία κλίσης και ο προσανατολισμός των συλλεκτών. Είναι ένας αρκετά αξιόπιστος τρόπος καθώς δεν έχει κινητά μέρη και προτείνεται σε μέρη με ισχυρούς ανέμους, π.χ. βουνά. Επίσης χρησιμοποιείται όταν θέλουμε να ενσωματώσουμε τους συλλέκτες σε κτίρια πχ. προσόψεις, στέγες.

Για την τοποθέτηση των συλλεκτών πρέπει να επιλεγεί η καταλληλότερη γωνία κλίσης και ο προσανατολισμός. Όταν ο χώρος τοποθέτησης δέχεται την ηλιακή ακτινοβολία καθ' όλη τη διάρκεια της ημέρας και του έτους, είναι η πιο απλή περίπτωση. Τότε η γωνία κλίσης του συλλέκτη είναι κοντά στο γεωγραφικό πλάτος του τόπου και κατά κανόνα ακολουθείται νότιος αζιμουθιακός προσανατολισμός για το βόρειο ημισφαίριο (στο νότιο ημισφαίριο επιλεγούμε βόρειο). Όταν η γωνία κλίσης είναι ίση με το λ του τόπου (γεωγραφικό πλάτος), οι ακτίνες πέφτουν κάθετα στους συλλέκτες δυο φορές το χρόνο, το μεσημέρι των ισημεριών, 21 Μαρτίου και 22 Σεπτεμβρίου.

Κατά το ηλιακό μεσημέρι, ο ήλιος, έχει το μέγιστο ύψος, ELM (maximum elevation). Το ύψος αυτό μεταβάλλεται καθημερινά, από την ελάχιστη τιμή ELM_{ελ}=(90°-λ)-23,5°, στις 22 Δεκεμβρίου, μέχρι την μέγιστη ELM_{μεγ}=(90°-λ)+23,5° (21 Ιουνίου) και στην συνέχεια μειώνεται και παίρνει την τιμή της 22ας Δεκεμβρίου. Η γωνία των ακτινών κατά την μεσουράνηση του, ως προς την κάθετη στην επιφάνεια του συλλέκτη, μεταβάλλεται από -23,5° έως +23,5°. Όταν ο συλλέκτης έχει κλίση ίση με την γωνιά λ του τόπου, η μέση ημερησία τιμή της ετησίας ενεργειακής απολαβής γίνεται μέγιστη.

Για να προκύψει, βεβαία η βέλτιστη γωνία κλίσης του συλλέκτη, με σταθερή γωνία κλίσης, πρέπει να ληφθούν υπόψη και οι κατά τόπους μετεωρολογικές συνθήκες οι οποίες επηρεάζουν την ολική διάχυτη και απευθείας ακτινοβολία καθώς και τη ανακλαστικότητα του εδάφους. Για να προκύψει η βέλτιστη γωνία κλίσης πρέπει να καταγραφούν όλα αυτά τα μετεωρολογικά στοιχεία για αρκετά χρόνια και σε διαφορετικές γωνίες. Συνήθως όμως δεν είναι διαθέσιμες λόγω του μεγάλου κόστους των μετρήσεων. Για το λόγο αυτό οι μετρήσεις γίνονται με έναν αισθητήρα ηλιακής ακτινοβολίας (π.χ. πυρανόμετρο) σε οριζόντια θέση για το μέγιστο χρονικό διάστημα. Μετά τη λήψη των μετρήσεων και κατάλληλη επεξεργασία προσδιορίζεται η βέλτιστη γωνία του συλλέκτη. Επίσης μπορούν να χρησιμοποιηθούν μετρήσεις για πλησιέστερη περιοχή, λαμβάνοντας υπόψη το albedo του εδάφους.

Παρατηρήσεις για την τοποθέτηση των συλλεκτών με σταθερή κλίση:

- Για τόπους με μέσα και μεγάλα γεωγραφικά πλάτη (>200) βρίσκεται στην περιοχή λ-(10°÷15°).
- Για τόπους με μικρά λ, γύρω από τον ισημερινό, η βέλτιστη γωνία είναι 0°.
 Στην πράξη όμως οι συλλέκτες τοποθετούνται με μια μικρή γωνία 5°÷10° ώστε, κατά την πλύση της επιφάνειας από το νερό της βροχής ή της πλύσης να απομακρύνονται τα διαφορά σώματα που επικάθονται (σκόνη, φύλλα, κ.α.).
- Για τόπους στους οποίους δεν υπάρχουν διαθέσιμα μετεωρολογικά δεδομένα ο συλλέκτης τοποθετείται σε γωνία β=λ-10°.
- Εάν πρέπει να καλυφθούν οι χειμερινές ανάγκες για ενέργεια, η καταλληλότερη γωνία είναι β=λ+15°. Ενώ εάν πρέπει να καλυφθούν οι θερινές ανάγκες για ενέργεια, τότε οι συλλέκτες τοποθετούνται με κλίση β=λ-15°.
- Σε περιοχές με φυσικά εμπόδια ο συλλέκτης τοποθετείται έτσι ώστε να προκύπτει η μέγιστη ενεργειακή απολαβή.

2.2.2 Στήριξη με Εποχιακή Ρύθμιση της Κλίσης του Συλλέκτη :

Όπως αναφέρθηκε στην προηγουμένη παράγραφο, δεν υπήρχε δυνατότητα αλλαγής της γωνιάς κλίσης του συλλέκτη, με αποτέλεσμα η εγκατάσταση να αποδίδει πολύ λιγότερο από τις δυνατότητές της. Για να αυξηθεί η απόδοση του συστήματος κατασκευάζονται βάσεις, στις οποίες τοποθετούνται οι συλλέκτες, με δυνατότητα ρύθμισης της κλίσης τους. Η μηχανολογική κατασκευή είναι σχετικά φθηνή και απλή ώστε όλοι οι χρήστες να μπορούν να κάνουν την εποχιακή ρύθμιση.

Η ρύθμιση του συλλέκτη γίνεται δυο φορές τον χρόνο, μια κατά το χειμερινό εξάμηνο (22 Σεπτεμβρίου - 21 Μαρτίου) και μια κατά το θερινό εξάμηνο (21 Μαρτίου - 22 Σεπτεμβρίου). Η αλλαγή αυτή γίνεται με τέτοιο τρόπο ώστε η κλίση μεταξύ των ακτινών του ηλίου και της επιφάνειας του συλλέκτη να πλησιάζει όσο το δυνατόν τις 90°.

Για τον προσδιορισμό της σωστής γωνιάς του συλλέκτη πρέπει να είναι γνωστά τα μετεωρολογικά δεδομένα του τόπου (ηλιοφάνειας, ανέμου, θερμοκρασίας, κλπ.), καθώς και το albedo του εδάφους όπως και στην προηγουμένη παράγραφο.

Συμπέρασμα:

Κατά τη χειμερινή περίοδο η καταλληλότερη γωνία κλίσης είναι β=λ + (10°÷15°).

Κατά τη θερινή περίοδο η καταλληλότερη γωνία είναι β=λ - (10°÷15°).

2.2.3 Παρατηρήσεις για την τοποθέτηση των συλλεκτών με ρυθμιζόμενη κλίση

Σε περιοχές με φυσικά εμπόδια ο συλλέκτης τοποθετείται έτσι ώστε να προκύπτει η μέγιστη ενεργειακή απολαβή κατά την διάρκεια όλου του έτους. Πρέπει να γίνεται σωστή μελέτη και σχεδιασμός της κατασκευής ώστε και στις δυο κλίσεις να επιτυγχάνεται η βέλτιστη γωνία για μέγιστη απόδοση.

2.2.4 Οφέλη από τις σταθερές κατασκευές

Οι σταθερές κατασκευές επιτρέπουν την εγκατάσταση περισσότερων πάνελ στον ίδιο χώρο σε σχέση με τους ιχνηλάτες, που λόγω της κίνησής τους καλύπτουν μεγαλύτερη περιοχή. Επομένως οι σταθερές κατασκευές παρέχουν περισσότερη συνολική ενέργεια για την ίδια περιοχή παρά τη χαμηλότερη ειδική παραγωγή (kWh/kWp) ειδικά το πρωί και το βράδυ.

Λαμβάνοντας υπόψη τη σκίαση μεταξύ των σειρών που δημιουργείται από την κλίση των πάνελ, οι σταθερές κατασκευές έχουν μικρότερη **απόσταση μεταξύ τους**, δίνοντας έτσι τη δυνατότητα εγκατάστασης περισσότερων σειρών και αυξάνοντας την ποσότητα της μέγιστης ισχύος και της συνολικής παραγόμενης ενέργειας. Τα σχέδια σταθερών πάνελ μπορούν να προσαρμοστούν ώστε να ταιριάζουν στη μεγαλύτερη ποσότητα πάνελ σε κάθε τοποθεσία.

2.3 Συστήματα Ανατολής-Δύσης[5]

Στα συστήματα ανατολής-δύσης, τα ηλιακά πάνελ εγκαθίστανται σε γωνίες αζιμουθίου 90 μοιρών, με τα μισά από αυτά να βλέπουν προς την ανατολή και τα μισά προς τη δύση. Αυτός ο προσανατολισμός χρησιμοποιείται τόσο στη γή όσο και σε επίπεδες οροφές.

Εικόνα 2.2 Διάταξη ανατολής-δύσης σε ΦΒ πάρκο (<u>https://sunshine-energy.gr/</u>)

Το ενδιαφέρον για τη διάταξη αυτή είναι σήμερα μεγαλύτερο διεθνώς, αν και περισσότερα τέτοια έργα κατασκευάζονται πιο κοντά στον ισημερινό ή σε έργα με περιορισμούς τοποθεσίας, όπως εμπορικές στέγες.

Με τη διάταξη ανατολής-δύσης υπάρχει η δυνατότητα εγκατάστασης μεγαλύτερης πυκνότητας ηλιακών μονάδων στα ίδια τετραγωνικά σε σχέση με μια συστοιχία με νότιο προσανατολισμό. Υπάρχουν λιγότεροι διάδρομοι μεταξύ σειρών πάνελ και πολλές φορές οι σειρές πάνελ μπορούν να εγκατασταθούν διαδοχικά για να σχηματίσουν μπλοκ.

Οποιαδήποτε απώλεια ενέργειας σε μια συστοιχία ανατολής-δύσης μπορεί να ανακτηθεί με τον αριθμό των επιπλέον μονάδων της, ειδικά αν βρίσκεται πιο κοντά στον ισημερινό. Όσο πιο νότια είναι ένα έργο, τόσο πιο ψηλά θα είναι ο ήλιος στον ουρανό καθ' όλη τη διάρκεια του έτους, που σημαίνει μεγαλύτερη έκθεση για μια σειρά ανατολής-δύσης.

Καθώς οι τιμές των πάνελ και των συσσωρευτών μειώνονται, η γη θα αποτελεί το πιο ακριβό μέρος του συστήματος, οπότε οι κατασκευαστές πιστεύουν ότι η διάταξη ανατολής-δύσης είναι η απάντηση στην εξοικονόμηση γης.

Εικόνα 2.3 Συστήματα ανατολής – δύσης σε ταράτσα (https://sunshine-energy.gr/)

2.3.1 Πλεονεκτήματα των συστημάτων ανατολής - δύσης

Αυτά τα έργα Ανατολής-Δύσης - τόσο στο έδαφος όσο και στην οροφή εγκαθίστανται σε μικρότερα ύψη από τις συστοιχίες με νότιο προσανατολισμό. Η χαμηλότερη γωνία των διαδοχικών μονάδων και το μικρότερο ύψος σημαίνει ότι ο άνεμος περνά πάνω και μέσα από τη συστοιχία. Στις συστοιχίες με νότιο προσανατολισμό, υπάρχει μεγαλύτερη αντίσταση στον αέρα που φυσά στο πίσω μέρος αυτών των μονάδων.

Τα συστήματα Ανατολής-Δύσης βλέπουν σταθερότερη συνολική παραγωγή καθ' όλη τη διάρκεια της ημέρας παρά την άνοδο της παραγωγής το μεσημέρι που παρατηρείται σε συστοιχίες με νότιο προσανατολισμό. Σε επίπεδο εξαρτημάτων, αυτό σημαίνει ότι αποφεύγεται το ψαλίδισμα του μετατροπέα, το οποίο συμβαίνει όταν ένας μετατροπέας λαμβάνει περισσότερη ηλεκτρική είσοδο από αυτή που έχει σχεδιαστεί για επεξεργασία.

2.3.2 Μειονεκτήματα των συστημάτων ανατολής - δύσης

Τα πάνελ με ανατολική και δυτική όψη πρέπει να έχουν ξεχωριστά ηλεκτρικά συστήματα, που απαιτούν διαφορετική διάταξη και ανάλυση τοποθεσίας από τις παραδοσιακές διαμορφώσεις. Και καθώς υπάρχει λιγότερος χώρος μεταξύ κάθε πίνακα, η εκτέλεση της συντήρησης είναι πιο δύσκολη από ό,τι με ένα σύστημα παρακολούθησης.

Η μεγάλη ποσότητα εγκατεστημένων μονάδων που λειτουργούν εκτός της βέλτιστης γωνίας προκαλεί πτώση της συγκεκριμένης παραγωγής της Φ/Β (kWh/kWp) εγκατάστασης και αύξηση του συνολικού κόστους της Φ/Β εγκατάστασης.

3. ΑΠΩΛΕΙΕΣ ΗΛΙΑΚΩΝ ΦΩΤΟΒΟΛΤΑΪΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Οι απώλειες φωτοβολταϊκών συστημάτων έχουν σημαντικό αντίκτυπο στη συνολική απόδοση και ισχύ εξόδου των συστοιχιών ηλιακών πάνελ. Ο καλός σχεδιασμός λαμβάνει υπόψη 10 κύριες απώλειες φωτοβολταϊκών, ενώ οι βέλτιστες πρακτικές σχεδιασμού και εγκατάστασης συμβάλλουν στη μείωση των απωλειών ισχύος ηλιακών κυψελών.

Είναι γεγονός ότι τα ηλιακά πάνελ δεν είναι πολύ αποδοτικά. Τα πιο αποτελεσματικά είναι μονοκρυσταλλικού τύπου, με τα πολυκρυσταλλικά πάνελ να έρχονται σε δεύτερη μοίρα. Τα μονοκρυσταλλικά πάνελ χρησιμοποιούνται εκτενώς για οικιακές και μεγάλης κλίμακας ηλιακές εγκαταστάσεις, ενώ άλλοι, εξειδικευμένοι τύποι χρησιμοποιούνται για ορισμένες περιπτώσεις που χρειάζονται συγκεκριμένα χαρακτηριστικά πάνελ. Παρακάτω δίνονται οι αποδόσεις των τριών πιο κοινών κατηγοριών πάνελ[2]

ΤΥΠΟΣ	Μονοκρυ	Πολυκρυστα	Λεπτή
	σταλλικό	λλικό	μεμβράνη
ΣΥΝΘΕΣΗ	Ένα	Πολλαπλοί	Λεπτές στρώσεις
	κρύσταλλο	κρύσταλλοι	πυριτίου
ΑΠΟΔΟΤΙΚΟ ΤΗΤΑ	Έως 22%	Περίπου 15%	Μέγιστο 10%

ΔΙΑΡΚΕΙΑ ΖΩΗΣ	25 έως 30 ετών	20 έως 25 ετών	15 έως 20 ετών
ΚΟΣΤΟΣ	Ακριβός	Πιο φθηνά	Ακριβός

Τα ηλιακά πάνελ βαθμολογούνται και αξιολογούνται με δύο συνήθεις τρόπους:

- Αξιολόγηση STC(Standard Test Conditions)
- Βαθμολογία **NOCT** (Nominal Operating Cell Temperature)

Η βαθμολογία ηλιακού πάνελ STC δίνει την ισχύ εξόδου σε ακτινοβολία 1000W/m² που είναι αρκετά υψηλό ποσοστό. Πολλές τοποθεσίες δεν έχουν αυτό το επίπεδο και σίγουρα, σχεδόν καμία τοποθεσία στη Γη δεν θα έχει αυτό το επίπεδο όλο το χρόνο.

Η βαθμολογία NOCT δίνει ισχύ σε ακτινοβολία 800 W/m², η οποία είναι πολύ πιο λογική. Σημαίνει ότι όταν αγοράζουμε ένα ηλιακό πάνελ 100 Watt, το καλύτερο που μπορούμε να περιμένουμε σε τέλειες συνθήκες είναι 100 Watt, αλλά κυρίως θα έχουμε 80 Watt μέση τιμή, πιθανώς λιγότερα όλο το χρόνο.

Αυτή είναι η πρώτη απώλεια που έχουμε να αντιμετωπίσουμε, αλλά, φυσικά, δεν μπορούμε να κάνουμε τίποτα γι' αυτό. Η αναποτελεσματικότητα είναι ενσωματωμένη. Στην πραγματικότητα, αυτός είναι ένας καλός τρόπος για να χαρακτηρίσουμε τις απώλειες φωτοβολταϊκών συστημάτων – αυτές που μπορούμε να βελτιώσουμε και αυτές που δεν μπορούμε.

Συνολικά, οι απώλειες ηλιακού συστήματος, συμπεριλαμβανομένης της απώλειας ισχύος σε ηλιακούς συλλέκτες, αντιπροσωπεύουν περίπου το 26% της παραγόμενης ενέργειας, επομένως ό,τι μπορούμε να κάνουμε για να βελτιώσουμε την παραγωγή θα μπορούσε να έχει σημαντικό αντίκτυπο στο κόστος λειτουργίας και απόσβεσης.

Από τον παρακάτω πίνακα φαίνεται ότι οι περισσότερες απώλειες είναι ζήτημα σχεδιασμού, ενώ καμία από αυτές δεν είναι σταθερή – ποικίλλουν ανάλογα με τη θερμοκρασία, τον καιρό και τις συνθήκες φορτίου.

Αιτία Απώλειας	Ποσοστό	Σχεδιασμός	Συνολικές Απώλειες	
Σκίαση	7%	Και τα δυο		
Σκόνη και βρωμιά	2%	Συντήρηση		
Αντανάκλαση	2,5%	Σχέδιο		
Φασματικές Απώλειες	1%	Σχέδιο	23,8%	
Ακτινοβολία	1,5%	Σχέδιο		
Θερμικές Απώλειες	4,6%	Σχέδιο		
Αναντιστοιχία πίνακα	0,7%	Σχέδιο		
Απώλειες καλωδίου DC	1%	Σχέδιο		
Απώλειες μετατροπέα	3%	Σχέδιο		
Απώλειες καλωδίου ΑC	0,5%	Σχέδιο		
3.1 Επίδραση της σκίασης σε σειρά και παράλληλα συνδεδεμένες ηλιακές φωτοβολταϊκές μονάδες

Είναι λογικό ότι η σκίαση της επιφάνειας ενός ηλιακού πάνελ από τον ήλιο θα υποβαθμίσει την απόδοσή του, αλλά αυτό μπορεί να είναι πιο σοβαρό από ό,τι φανταζόμαστε.

Ο καλός σχεδιασμός μπορεί να μειώσει αυτήν την τιμή, ενώ η συνεχής συντήρηση θα διασφαλίσει ότι οι συστοιχίες των πάνελ δεν θα επισκιαστούν από δομές ή ανάπτυξη φυτών.

Έστω πάνελ 20 Volt 300 Watt με 60 ηλιακά κύτταρα, Voc 38 volt Imax 24 Α. – αυτό είναι ένα τυπικό μέγεθος που μπορεί να χρησιμοποιηθεί για οικιακή ηλιακή εγκατάσταση. Αν καλυπτόταν πλήρως μόνο ένα από τα κελιά , η παραγωγή θα μειωθεί κατά 75% . Αυτό εξηγείται στη συνέχεια

Τα ηλιακά κύτταρα συνδέονται σε σειρά σε ομάδες των 20, στην περίπτωση ενός πάνελ 60 κυψελών, έτσι ώστε το ίδιο ρεύμα να ρέει μέσα από τις κυψέλες μιας ομάδας. Εάν έστω και ένα κελί είναι μερικώς σκιασμένο, εμποδίζοντας ένα ποσοστό της ροής του ρεύματος, η έξοδος ολόκληρου του πάνελ θα επηρεαστεί.

Εκτός από τη σοβαρή μείωση της ισχύος εξόδου, τα πάνελ μπορεί να καταστραφούν λόγω της δημιουργίας hot-spots, κάτι που μπορεί να συμβεί χωρίς ηλεκτρονική προστασία.

3.2 Λύσεις σκίασης ηλιακών πάνελ

3.2.1 Δίοδοι παράκαμψης

Όλα τα σύγχρονα ηλιακά πάνελ είναι εξοπλισμένα με διόδους παράκαμψης, οι οποίες επιτρέπουν στο ρεύμα να ρέει γύρω από μια ομάδα ηλιακών κυψελών που ενδέχεται να μπλοκάρουν λόγω σκίασης. Δυστυχώς, η παραγωγή της συγκεκριμένης ομάδας χάνεται σε βάρος της εξοικονόμησης των άλλων δύο τρίτων.Δεν είναι η καλύτερη λύση, αλλά είναι η φθηνότερη.Οι δίοδοι by-pass δεν είναι γνωστές για τη μεγάλη διάρκεια ζωής τους και είναι επίσης επιρρεπείς σε αστοχίες.

Μια πρόσφατη μελέτη βρήκε ποσοστό αστοχίας 47% κυρίως λόγω του γεγονότος ότι οι συνθήκες λειτουργίας των περισσότερων φωτοβολταϊκών συστημάτων είναι πολύ πιο σκληρές από τις συνθήκες εργαστηριακών δοκιμών.

Υπάρχουν καλύτεροι τρόποι όχι μόνο για τη μεγιστοποίηση της απόδοσης λόγω των απωλειών σκίασης αλλά και για την προστασία των ίδιων των **ΠλΙακών συλλεκτών** από ζημιές υπερθέρμανσης που προκαλούνται από τροφοδοσίες πίσω και μη ισορροπημένα φορτία.

3.2.2 Ηλιακά πάνελ με ενσωματωμένους μικρο-μετατροπείς

Η τυπική διάταξη (μέχρι τώρα) για τη μετατροπή της τάσης συνεχούς ρεύματος που παράγεται από τα ηλιακά πάνελ σε εναλλασσόμενο ρεύμα που χρειαζόμαστε στο σπίτι μας ήταν να εγκαταστήσουμε μόνο έναν μεγάλο ηλιακό μετατροπέα.

Μια σειρά από 10 έως 14 πάνελ μπορεί να συνδεθούν μεταξύ τους σε σειρά, έτσι ώστε η τάση DC να φτάσει τα 600 βολτ – αυτό από μόνο του δεν είναι καλό. Είναι επικίνδυνο για ένα πράγμα. Τόξα ρεύματος συνεχούς ρεύματος που προκαλούν ζημιές και εγκαύματα.

Εάν ένα πλαίσιο στη συμβολοσειρά είναι σκιασμένο, τότε η μείωση της ισχύος εξόδου είναι σημαντική, λόγω της φύσης των σειριακών συνδέσεων. Μια λύση είναι να τοποθετηθεί ένας μικρο-μετατροπέας σε κάθε πάνελ, ο οποίος μετατρέπει την ηλεκτρική ενέργεια σε AC και τον μεταδίδει σε ένα κεντρικό κουτί για περαιτέρω διανομή. Με αυτόν τον τρόπο, η έξοδος ενός ηλιακού πάνελ δεν τραβάει τα άλλα με τον ίδιο τρόπο.

3.3 Η επίδραση της σκόνης στην απόδοση του ηλιακού πάνελ

Ο αντίκτυπος της σκόνης στην απόδοση των ηλιακών φωτοβολταϊκών δεν μπορεί να αγνοηθεί και το διάγραμμα δίνει 2% απώλεια ενέργειας ως εύλογο ποσοστό για τους επαγγελματίες του κλάδου που μπορούν να χρησιμοποιήσουν στους υπολογισμούς σχεδιασμού τους. Αυτή είναι πραγματικά μια ευρεία μέση τιμή και θα ποικίλλει πολύ ανάλογα με τη γεωγραφική θέση.

Το 2% είναι περίπου σωστό για μια χώρα με βροχές όλο το χρόνο, αλλά για τοποθεσίες με μεγάλες περιόδους σκόνης και κοντά σε βιομηχανική δραστηριότητα, το ποσοστό αυτό θα μπορούσε εύκολα να φτάσει το 6 ή 7% – αυτή η απώλεια ενέργειας δεν είναι αμελητέα.

Η σκόνη συσσωρεύεται σε πάνελ που είναι τοποθετημένα σε χαμηλότερη γωνία κλίσης, αλλά ένας άλλος εχθρός της αποτελεσματικότητας του πάνελ, το κόπρανα των πουλιών, είναι ένας πολύ καλός αποκλεισμός του ηλιακού φωτός. Συσσωρεύεται αρκετά γρήγορα με την πάροδο του χρόνου και επίσης σκληραίνει, καθιστώντας πολύ δύσκολο τον καθαρισμό του.

Όσον αφορά τη συχνότητα καθαρισμού των πάνελ, οι επαγγελματικές εταιρείες καθαρισμού συνιστούν ότι οι συστοιχίες ηλιακών πάνελ πρέπει να καθαρίζονται μία φορά κάθε 6 μήνες. Αυτό έχει αποδειχθεί ότι βελτιώνει την παραγωγή ενέργειας κατά 3 έως 5% κατά μέσο όρο, με κέρδη έως και 25% σε περιοχές με πολύ σκόνη.

Όσον αφορά τον τρόπο καθαρισμού, πολλές εταιρείες συμβουλεύουν ζεστό νερό και ένα ήπιο διάλυμα σαπουνιού, όπως το πλύσιμο ενός αυτοκινήτου. Ωστόσο, πολλά σαπούνια αφήνουν ένα λεπτό φιλμ στις επιφάνειες των πάνελ. Ένας απλός καθαρισμός με ιονισμένο νερό και μαλακή βούρτσα είναι επαρκής.

Αν και η βροχή καθαρίζει τα πάνελ σε κάποιο βαθμό, δεν είναι αρκετά καλή για να αφαιρέσει όλη τη βρωμιά της επιφάνειας. Ο τακτικός καθαρισμός πρέπει να αποτελεί μέρος της προγραμματισμένης συντήρησης.[2]

3.4 Οπτικές απώλειες σε συστοιχίες ηλιακών κυψελών

Τα ηλιακά κύτταρα παράγουν ηλεκτρισμό από την αλληλεπίδραση φωτονίων φωτός με τις ενώσεις PN της κρυσταλλικής δομής των ηλιακών κυψελών. Οπτικές απώλειες συμβαίνουν όταν το φως ανακλάται από την επιφάνεια του πάνελ αντί να απορροφηθεί στην επιφάνεια του πάνελ για να αλληλοεπιδράσει με τα ηλεκτρόνια.

Αυτό είναι σίγουρα ένα χαρακτηριστικό σχεδιασμού πάνελ και αποτελεί αντικείμενο συνεχούς έρευνας για τη βελτίωση της απόδοσης του πάνελ. Η πρόκληση είναι να μειωθεί η ανακλαστικότητα της επιφάνειας με παράλληλη μεγιστοποίηση της απορρόφησης φωτός.

Αυτό μπορεί να γίνει «τραχύνοντας» την επιφάνεια με πρόσθετα κοκκώδους βαφής ή προσθέτοντας άλλο μέσο μηχανισμού παγίδευσης φωτός.

3.5 Φασματική Απόκριση Ηλιακών Κυψελών

Τα ηλιακά κύτταρα δεν χρησιμοποιούν όλα τα μήκη κύματος που μεταδίδονται από τον ήλιο. Υπάρχουν πολλές συχνότητες, κυρίως 43% ορατό φως, 54% υπέρυθρο και 4% υπεριώδες.

Τα ηλιακά κύτταρα μπορούν να μετατρέψουν το μεγαλύτερο μέρος του ορατού φωτός και το ήμισυ του υπέρυθρου, με λίγο από το υπόλοιπο. Οι κατασκευαστές προσπαθούν να βελτιστοποιήσουν τα πάνελ για να παρέχουν μια γενική ευρεία απόκριση για μεγιστοποίηση της ηλεκτρικής απόδοσης.

3.6 Απώλεια ΦΒ λόγω επιπέδου ακτινοβολίας

Αυτός ο μέσος όρος υπολογίζεται για πρακτικούς σκοπούς στο 1,5% και αντιπροσωπεύει την υποβάθμιση της απόδοσης όταν η ακτινοβολία μειώνεται από την βαθμολογία STC των 1000 W/m2 σε χαμηλή ακτινοβολία 200 W/m2.

Η παραγωγή ενέργειας δεν ακολουθεί μια γραμμική σχέση – η απόδοση μειώνεται και χρησιμοποιείται μια τιμή για την αντιστάθμιση της απώλειας ενέργειας στη φάση του σχεδιασμού και κατά τη διάρκεια ζωής του φωτοβολταϊκού συστήματος.

3.7 Επίδραση της θερμοκρασίας στην απόδοση των ηλιακών πάνελ

Η απώλεια ενέργειας λόγω υψηλής θερμοκρασίας είναι μία από τις μεγαλύτερες απώλειες, κυρίως επειδή πρόκειται για ένα εγγενές χαρακτηριστικό της δομής των ηλιακών κυψελών – για κάθε 1 °C πάνω από την ονομαστική θερμοκρασία STC των 25°C, ένα ηλιακό στοιχείο χάνει το 0,5% της παραγωγής του.

Αντικείμενο συνεχιζόμενης έρευνας, έχουν προταθεί ορισμένοι καινοτόμοι τρόποι μείωσης της θερμικής απώλειας. Πολλά περιλαμβάνουν διάνοιξη οπών ή μακριές σχισμές στο πλαίσιο αλουμινίου για να επιτρέπεται είτε η φυσική είτε η εξαναγκασμένη κυκλοφορία αέρα.

Άλλοι κατασκευαστές θεωρούν ότι τα πολυκρυσταλλικά πάνελ με τη δομή πολλαπλών συνδέσμων δεν είναι τόσο ευαίσθητα σε θερμικές απώλειες.

Ίσως μια από τις πιο συναρπαστικές προτάσεις είναι το υβριδικό φωτοβολταϊκό-θερμικό ηλιακό πάνελ, το οποίο δροσίζει την όψη των ηλιακών κυψελών με νερό και ανακτά τη θερμότητα για χρήση στο κτίριο. Αρκετοί Ευρωπαίοι κατασκευαστές (solar2power.pt και dualsun.com) ισχυρίζονται αύξηση της παραγωγής ηλεκτρικής ενέργειας κατά 15%, ενώ παράλληλα ανακτούν αρκετή θερμότητα για να μηδενίσουν τους λογαριασμούς θέρμανσης νερού οικιακής χρήσης.

3.8 Ανακολουθία ηλιακών συλλεκτών – Απώλειες ανακολουθίας στη μονάδα ηλιακής φωτοβολταϊκής μονάδας

Η ανακολουθία εμφανίζεται μεταξύ των ηλιακών μονάδων όταν η ενέργεια που παράγεται από δύο ή περισσότερα πάνελ σε μια συστοιχία είναι διαφορετική. Αυτό μπορεί να συμβεί με δύο τρόπους, με μερική σκίαση ή λόγω διαφορών στα ηλεκτρικά χαρακτηριστικά των ηλιακών κυψελών.

Τα μεμονωμένα πάνελ σε μια συστοιχία απλά δεν έχουν το ίδιο αποτέλεσμα. Οι πλήρεις συμβολοσειρές ενδέχεται να μην ταιριάζουν λόγω κακού προσανατολισμού ή καταστάσεων όπου διαφορετικοί πίνακες αντιμετωπίζουν διαφορετικές κατευθύνσεις. Εκτός από αυτό, τα πάνελ δεν είναι πανομοιότυπα όταν κατασκευάζονται.

Όλα όσα παράγονται σε ένα εργοστάσιο, από ένα ανταλλακτικό αυτοκινήτου έως ένα ηλιακό στοιχείο, κατασκευάζονται με ανοχή. Στην περίπτωση της ηλιακών πάνελ, αυτό είναι μεταξύ +/-1,5% έως +/-5%. Βασικά αυτό σημαίνει ότι οι μονάδες που δημιουργούνται από αυτές τις ηλιακές κυψέλες δεν πρόκειται να παράγουν ίδιες ποσότητες ηλεκτρικής ενέργειας.

Επί του παρόντος, η καλύτερη λύση είναι η τοποθέτηση ηλεκτρονικών σε επίπεδο πίνακα, όπως βελτιστοποιητές DC ή η χρήση πάνελ με ενσωματωμένους μικρο-μετατροπείς [2]

3.9 Απώλειες καλωδίου DC σε Φ/Β συστήματα

Δεν είναι δυνατό να εξαλειφθούν οι απώλειες στα καλώδια συνεχούς ρεύματος - εάν ρέει ρεύμα τότε υπάρχει απώλεια ενέργειας. Το μόνο που μπορεί να γίνει είναι να ελαχιστοποιήσουμε την απώλεια όσο το δυνατόν περισσότερο.

Οι σχεδιαστές προσπαθούν να διαμορφώσουν το μέγεθος των καλωδίων έτσι ώστε οι απώλειες καλωδίων συνεχούς ρεύματος να είναι μικρότερες από το 1% της μέγιστης παραγωγής ισχύος ολόκληρου του συστήματος ηλιακών πάνελ, αν και το 2% είναι αποδεκτό. Αυτό επιτυγχάνεται ως εξής: Η ηλεκτρική αντίσταση των καλωδίων προκαλεί τόσο πτώση τάσης όταν ρέει ρεύμα όσο και απώλεια ισχύος με τη μορφή θέρμανσης. Το αποτέλεσμα θέρμανσης είναι μεγαλύτερο όσο υψηλότερο είναι το ρεύμα και είναι επίσης ένας παράγοντας στις συνδέσεις.

Μια σύνδεση υψηλής αντίστασης θα φθαρεί υπό συνεχές φορτίο. Ο σωστός σχεδιασμός και η τακτική ηλεκτρική συντήρηση είναι οι κύριοι τρόποι για την καταπολέμηση της απώλειας καλωδίου DC.

3.10 Απώλειες ηλιακού μετατροπέα

Για την πιο κοινή μορφή μετατροπέα, τον μετατροπέα στοιχειοσειρών, η απόδοση είναι περίπου 97%, πράγμα που σημαίνει ότι χάνονται 3 kWh για κάθε 100 kWh.

Δύο από τα πιο σημαντικά πράγματα που επηρεάζουν την απόδοση του ηλιακού μετατροπέα είναι η θερμοκρασία και το φορτίο. Όπως οι περισσότερες συσκευές, οι μετατροπείς έχουν καμπύλη απόδοσης, με μέγιστη απόδοση κοντά στο μέγιστο φορτίο εργασίας και γενικά χαμηλότερα επίπεδα σε χαμηλότερα φορτία. Αυτό δεν είναι συνήθως πρόβλημα έως ότου το φορτίο του μετατροπέα πέσει κάτω από 25-30%, αλλά κάτω από αυτό πέφτει δραματικά.

3.11 Απώλειες καλωδίων ΑC σε ηλιακά συστήματα

Οι κανονισμοί επιτρέπουν πτώση τάσης έως και 3% σε καλώδια DC και AC, αλλά οι σχεδιαστές στοχεύουν στο 1%. Στην πραγματικότητα, ο μόνος τρόπος με τον οποίο μπορούμε να επηρεάσουμε τις απώλειες εναλλασσόμενου ρεύματος είναι επιλέγοντας τα σωστά εξαρτήματα και τοποθετώντας καλώδια με κατάλληλη επιφάνεια διατομής και όσο το δυνατόν μικρότερη.

3.12 Άλλες Απώλειες Φ/Β συστήματος

Οι μηχανικοί περιλαμβάνουν επίσης απώλεια ενέργειας 2 έως 3% λόγω προβλημάτων χρόνου διακοπής λειτουργίας του εξοπλισμού, είτε λόγω βλαβών είτε λόγω διακοπής του δικτύου. Παρόλο που δεν σχετίζεται αυστηρά με την απόδοση του συστήματος, πρέπει να ληφθεί υπόψη.

Οι ηλιακές κυψέλες μειώνουν την απόδοσή τους με την πάροδο του χρόνου και ενώ οι κατασκευαστές προσφέρουν εγγυήσεις έως και 25 ετών, η απόδοση ισχύος δεν είναι ομοιόμορφη κατά τη διάρκεια αυτής της περιόδου, δημιουργώντας ίσως το 80% της μέγιστης απόδοσης στο τέλος της περιόδου εγγύησης.

Αν και οι ηλιακές μονάδες μπορούν να λειτουργήσουν για έως και 50 χρόνια, η υποβάθμιση των πάνελ αντιπροσωπεύει περίπου 0,8% μείωση της ισχύος εξόδου κάθε χρόνο.

3.13 Προσέγγιση για τη μείωση των απωλειών σε ένα έργο ηλιακής φωτοβολταϊκής ενέργειας

Μια γρήγορη ματιά στη λίστα ελέγχου των απωλειών ηλιακών φωτοβολταϊκών θα επιβεβαιώσει ότι οι περισσότερες σχετίζονται με ζητήματα σχεδιασμού ή χαρακτηριστικά εξαρτημάτων. Ο τεχνικός εγκατάστασης μπορεί να κάνει συνετές επιλογές στην καλωδίωση για να μεγιστοποιήσει την απόδοση και επίσης να δώσει ιδιαίτερη προσοχή στη σκίαση σε κοντινή και μεγάλη απόσταση.

Η εγκατάσταση των πιο πρόσφατων μικρο-μετατροπέων ή βελτιστοποιητών DC μπορεί να βοηθήσει σημαντικά στη μείωση της απώλειας αναντιστοιχίας ή παρόμοιων επιπτώσεων που προκαλούνται από τη μερική σκίαση.

Η τακτική συντήρηση διασφαλίζει ότι εξαλείφεται η σκίαση μέσω της ανάπτυξης των φυτών και ο τακτικός καθαρισμός διασφαλίζει ότι η μέγιστη ποσότητα ηλιακής ενέργειας φτάνει στις επιφάνειες του πάνελ.

3.14 Τρόποι βελτίωσης της απόδοσης των ηλιακών πάνελ

3.14.1 Αυτόματοι Ηλιακοί Ιχνηλάτες

Οι σταθερές συστοιχίες ηλιακών συλλεκτών εγκαθίστανται συνήθως σε μια κεκλιμένη οροφή που επιλέγεται για τον σωστό προσανατολισμό όσο το δυνατόν πλησιέστερα προς το νότο (αν βρίσκεται στο βόρειο ημισφαίριο.)

Ο ήλιος κινείται στον ουρανό με δύο τρόπους – κάθετα, καθώς ανατέλλει και πέφτει, και οριζόντια, καθώς κινείται από την Ανατολή στη Δύση.

Καθώς ο ήλιος κινείται κατά μήκος της επιφάνειας του πίνακα, η γωνία πρόσπτωσης με την οποία οι ακτίνες του ήλιου χτυπούν την επιφάνεια αλλάζει και γίνεται πιο λοξή. Μειώνει την ποσότητα της μετατροπής ενέργειας που λαμβάνει χώρα στους κρυστάλλους των ηλιακών κυψελών.

Ένας ηλιακός μηχανισμός παρακολούθησης ακολουθεί τον ήλιο σε όλο τον ουρανό, έτσι ώστε τα πάνελ να είναι κάθετα στις ακτίνες του ήλιου, μεγιστοποιώντας έτσι την απόδοση ισχύος. Οι ιχνηλάτες που ακολουθούν την οριζόντια κίνηση είναι γνωστοί ως ιχνηλάτες μονού άξονα και αυτοί που ακολουθούν και τους δύο ονομάζονται ιχνηλάτες διπλού άξονα.

Ο μεμονωμένος άξονας μπορεί να ανακτήσει έως και 45% περισσότερη ηλιακή ενέργεια, ενώ τα μοντέλα διπλού άξονα μπορούν να εξοικονομήσουν ένα τεράστιο 65%, επομένως λειτουργούν πολύ καλά.

Δυστυχώς είναι ακριβά και δεν είναι κατάλληλα για όλες τις καταστάσεις, αλλά αξίζει να τα εξετάσετε.

3.14.2 Ανακλαστικοί καθρέφτες για τη βελτίωση της απόδοσης των ηλιακών πάνελ

Οι καθρέφτες έχουν χρησιμοποιηθεί από καιρό για τη βελτίωση της απόδοσης των ηλιακών πάνελ με ποικίλη επιτυχία. Τα τελευταία χρόνια το κόστος της ηλιακής ενέργειας έχει μειωθεί τόσο πολύ που η εστίαση στην απόδοση δεν ήταν τόσο μεγάλη, αλλά εξακολουθεί να λαμβάνεται υπόψη – εάν μια βιώσιμη μέθοδος αυξάνει την παραγωγή γιατί να μην τη χρησιμοποιήσετε;

Είναι πολύ λογικό να ανακτήσουμε κάποιες από τις απώλειες για τις οποίες έχουμε μιλήσει σε αυτήν την ανάρτηση και σε πολλές χώρες λύσεις χαμηλής τεχνολογίας όπως ηλιακοί ανακλαστήρες είναι οι μόνες διαθέσιμες.

Οι δοκιμές δείχνουν ότι είναι δυνατό να αποκτήσετε έως και 30% αύξηση στην ισχύ εξόδου χρησιμοποιώντας καθρέφτες, αλλά φυσικά υπάρχει ένα μειονέκτημα στην περισσότερη ηλιακή ενέργεια - τη θερμότητα!

Η απόδοση ενός ηλιακού πάνελ μειώνεται κατά 5% για κάθε αύξηση της θερμοκρασίας κατά 10 βαθμούς Κελσίου, επομένως απαιτείται ξεχωριστό μέσο για την απομάκρυνση της περίσσειας θερμότητας, αυξάνοντας περαιτέρω το κόστος. [2]

4. ΑΠΩΛΕΙΕΣ ΣΤΑ ΦΩΤΟΒΟΛΤΑΪΚΑ ΠΑΝΕΛ

4.1 Τα είδη της προσπίπτουσας ακτινοβολίας

Μερικά από τα είδη των απωλειών που παρουσιάζονται στις ΦΒ εγκαταστάσεις οφείλονται στον τρόπο που δέχονται τα πάνελ την ακτινοβολία. Παρακάτω αναλύονται τα είδη της προσπίπτουσας ακτινοβολίας στα πάνελ.

4.1.1 Άμεση κανονική ακτινοβολία (Direct Normal IrradianceDNI)

Είναι η ποσότητα της ηλιακής ακτινοβολίας που λαμβάνεται ανά μονάδα επιφάνειας από μια επιφάνεια που διατηρείται πάντα κάθετη (ή κανονική) στις ακτίνες που έρχονται σε ευθεία γραμμή από την κατεύθυνση του ήλιου στην τρέχουσα θέση της στον ουρανό. Η ποσότητα ακτινοβολίας που λαμβάνεται ετησίως από μια επιφάνεια μεγιστοποιείται όταν διατηρείται κάθετη στην εισερχόμενη ακτινοβολία. Η ιδιότητα αυτή αξιοποιείται στους ΦΒ συλλέκτες με τη χρησιμοποίηση ιχνηλατών με κλίση που διατηρούν την επιφάνεια του συλλέκτη κάθετη στην ηλιακή ακτινοβολία προκειμένου να μεγιστοποιηθεί η παραγωγή ηλεκτρικής ενέργειας. Αυτό φαίνεται και από τις μελέτες που παρατίθενται στο 6. ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΜΕΛΕΤΗΣ.

4.1.2 Διάχυτη οριζόντια ακτινοβολία (Diffuse Horizontal Irradiance - DHI)

Είναι η ποσότητα ακτινοβολίας που δεν φτάνει απευθείας σε μια επιφάνεια από τον ήλιο αλλά έχει περάσει μέσα από μόρια και σωματίδια της ατμόσφαιρας (π.χ. σύννεφα) και λαμβάνεται από όλες τις κατευθύνσεις.

4.1.3 Η Παγκόσμια Οριζόντια Ακτινοβολία (GHI)

Είναι η συνολική ποσότητα ακτινοβολίας που λαμβάνεται από μια επιφάνεια οριζόντια προς το έδαφος. Η τιμή αυτή παρουσιάζει ιδιαίτερο ενδιαφέρον για τις φωτοβολταϊκές εγκαταστάσεις και περιλαμβάνει τόσο την Άμεση Κανονική Ακτινοβολία (DNI) όσο και την Διάχυτη Οριζόντια Ακτινοβολία (DHI). Ισχύει η παρακάτω σχέση:

$(GHI) = (DNI) X \cos(\theta) + (DHI)$

To Σχήμα 4.1 Τα τρία είδη ακτινοβολίας πάνω στο ηλιακό πάνελ (https://www.researchgate.net/publication/351752520_On_the_Optimal_Tilt_Angle_and_O rientation_of_an_On-

Site_Solar_Photovoltaic_Energy_Generation_System_for_Sabah%27s_Rural_Electrification/f igures?lo=1) δείχνει τον τρόπο με τον οποίο προσπίπτουν και τα τρία είδη ακτινοβολίας πάνω στο πάνελ

Σχήμα 4.1 Τα τρία είδη ακτινοβολίας πάνω στο ηλιακό πάνελ (https://www.researchgate.net/publication/351752520_On_the_Optimal_Tilt_Angle_and_Orientation_of_an_On-Site_Solar_Photovoltaic_Energy_Generation_System_for_Sabah%27s_Rural_Electrification/figures?lo=1)

4.2 Τα είδη απωλειών στα ΦΒ πάνελ

Οι απώλειες συστοιχίας επηρεάζουν αρνητικά την ενέργεια εξόδου της συστοιχίας σε σχέση με την ονομαστική ισχύ της μονάδας φωτοβολταϊκών όπως αναφέρεται από τον κατασκευαστή για συνθήκες STC. Πολλές από αυτές τις απώλειες δεν είναι άμεσα μετρήσιμες. Ιδανικά μια Φ/Β-συστοιχία θα πρέπει να αποδίδει ένα kW/kWp υπό ακτινοβολία (Ginc) 1 kW. Δηλαδή, υποθέτοντας μια γραμμική απόκριση σύμφωνα με το Ginc, η ιδανική συστοιχία θα παράγει μία kWh ενέργεια κάτω από μία kWh ακτινοβολίας για κάθε εγκατεστημένο kWp (όπως ορίζεται στο STC). Αυτή η ιδανική απόδοση μειώνεται από τις ακόλουθες απώλειες:

- Απώλειες σκίασης . Σκίαση μέρους του πάνελ επηρεάζει την παραγόμενη ηλεκτρική ενέργεια
- Ο τροποποιητής γωνίας πρόσπτωσης (Incidence Angle Modifier IAM), είναι ένα οπτικό αποτέλεσμα (απώλεια ανάκλασης) που αντιστοιχεί στην εξασθένηση της ακτινοβολίας που φθάνει πραγματικά στην επιφάνεια των Φ/Β κυττάρων, σε σχέση με την ακτινοβολία υπό κανονική πρόσπτωση.
- Απώλεια ακτινοβολίας (irradiance loss): η ονομαστική απόδοση καθορίζεται για το STC (1000 W/m²), αλλά μειώνεται με την ακτινοβολία σύμφωνα με το τυπικό μοντέλο ΦΒ.
- Θερμική συμπεριφορά του Φ/Β πάνελ. Οι τυπικές συνθήκες δοκιμής καθορίζονται για θερμοκρασία κυψέλης 25°C, αλλά οι μονάδες λειτουργούν συνήθως σε πολύ υψηλότερες θερμοκρασίες. Η θερμική απώλεια υπολογίζεται σύμφωνα με το μοντέλο μιας διόδου. Για τα κύτταρα κρυσταλλικού πυριτίου, η απώλεια είναι περίπου -0,4 %/°C σε MPP. Για συνθήκες λειτουργίας σταθερής τάσης, η θερμοκρασία επηρεάζει κυρίως την τάση της καμπύλης I/V και οι αποτελεσματικές απώλειες εξαρτώνται σε μεγάλο βαθμό από την υπέρταση της συστοιχίας σε σχέση με την τάση λειτουργίας.
- Πραγματικές επιδόσεις της μονάδας σε σχέση με τις προδιαγραφές του κατασκευαστή. Υπάρχει ένας σχετικός παράγοντας απώλειας, ο οποίος σχετίζεται με τη μέση ενεργή ισχύ της μονάδας στις STC και λειτουργεί ως σταθερός συντελεστής μείωσης κατά τη διάρκεια όλων των συνθηκών προσομοίωσης.
- Απώλειες αναντιστοιχίας των φωτοβολταϊκών μονάδων (mismatch losses), οι οποίες μπορούν να αξιολογηθούν με ειδικό εργαλείο, αλλά λαμβάνονται υπόψη μόνο ως σταθερές απώλειες κατά την προσομοίωση.
- Η βρωμιά στις φωτοβολταϊκές μονάδες μπορεί να οριστεί σε % STC, σε ετήσια ή σε μηνιαίες τιμές.
- Απώλεια MPP (MPP losses), δηλαδή η διαφορά μεταξύ των πραγματικών συνθηκών λειτουργίας και του μέγιστου διαθέσιμου σημείου ισχύος.

- Οι απώλειες ωμικής καλωδίωσης (ohmic wiring losses), ως θερμικά φαινόμενα, οδηγούν ουσιαστικά σε πτώση τάσης των χαρακτηριστικών της συστοιχίας I/V. Το πραγματικό αποτέλεσμα είναι διαφορετικό είτε η συστοιχία λειτουργεί σε MPP είτε σε σταθερή τάση.
- Απώλεια ρύθμισης είναι η δυνητικά διαθέσιμη ενέργεια από τη Φ/Β γεννήτρια, αλλά η οποία δεν μπορεί να χρησιμοποιηθεί από το σύστημα.

Οι περισσότερες από αυτές τις απώλειες φαίνονται και στις μελέτες που ακολουθούν στο ΚΕΦΑΛΑΙΟ 6.

5. ΟΔΗΓΟΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ PVSyst

<u>Βήμα 1</u>: Επιλέγουμε το είδος του Project. Στην περίπτωση μας είναι Grid-Connected, δηλαδή το ΦΒ που θα μελετηθεί θα είναι διασυνδεδεμένο με το δίκτυο ηλεκτρικής ενέργειας

🜈 р	Vsyst 7.3 - TRIAL								—		х
File	Preliminary design	Project	Settings	Language	License	Help					
	📢 Welcome to	PVsyst	7.3								
	Project design and		n								
	Grid-Co	我 onnected				Standalone			D Pumping		
	Utilities Data	abases				% Tools			Measured Data		
	Recent project	ts					Docu	imentation			
	集 New Project 集 New Project							Open PVsy:	? st Help (F1)		
							(Ç F.A.Q.	Video	tutorials	
							The contex by typing [i There are a specific info	tual Help is available =1]. Ilso many questionm rrmation.	e within the whole so nark buttons for mor	oftware e	
	PVsyst user w	orkspace									
	C:\Users\User\PVsyst7	.0_Data						🖌 Mana	ge îți s	Switch	

roject	📩 New 📂 Load	d 💾 Save 🚽 Import 🕞 Export 🔯 Project settings	🗴 🍈 Delete 🛛 🚨 Qient	/ ·
oject's name	New Project		Client name Not defeed	
te File			a 🖻 🛃 🔪	
eteo File				
		Please choose the geographical site.	\checkmark	
ariant	E New E Save	re 💽 Import 🛅 Delete 🔯 Manage		1
ariant	New Simulation variant	re Dimport The Delete Manage	Results overview	1
ariant riant n° VCO	: New simulation variant	re 🚡 Import 🏦 Delete 🏟 Manage	Results overview System kind	No 3D scene defined, no shadings
ariant riant n° (VCO)	E New E Sav	re import in Relete i Manage	Results overview System kind System Production	No 3D scene defined, no shadings 0.00 MWh/yr
ariant n° VCO lain parameters © Orientation	E bew E Sav	re import in Relete import in Relete	Results overview System kind System Production Specific production Performance Ratio	No 3D scene defined, no shadings 0.00 MV/h/yr 0.00 Wh/kWp/yr
ariant riant n° VCO ain parameters © Orientation © System	: New simulation variant	e port Transformer Annage	Results overview System kind System Production Seefic production Performance Ratio Normalied production	No 3D scene defined, no shadings 0.00 W/h/γr 0.00 W/h/γr 0.00 W/h/k/b/γr 0.00 0.00 W/h/k/b/dby 0.00
ariant n° VCO Hin parameters Orientation System Detailed losses	Even Even Serv : New simulation variant () () () () () () () () () ()	re import in Delete Amoge	Results overview System Kind System Production Specific production Performance Ratao Normaleed production Array losses Srystem losses	No 3D scene defined, no 0.00 With/rr 0.00 With/kt/p/r 0.00 With/kt/p/day 0.00 With/kt/p/day 0.00 With/kt/p/day 0.00 With/kt/p/day 0.00 With/kt/p/day
ariant " (CO)	Every management	e import in Delete Annue	Results overview System Kind System Production Specific production Performance Ratio Normaleed production Array losses System losses	No 3D scene defined, no 0.00 With/rr 0.00 With/Way/r 0.00 With/Way/day 0.00 With/Way/day 0.00 With/Way/day 0.00 With/Way/day
ariant " (CO) sin parameters © Orientation © System © Detailed losses © Self-consumpton © Storage	Every simulation variant	e mort in gelete Manage	Results overview System Kind System Production Seefic production Performance Ratio Normaled production Array losses System losses	No 3D scene defined, no shadings 0.00 With/rr 0.00 With/rr

<u>Βήμα 2</u>: Επιλέγουμε την έκταση που θα φιλοξενήσει το ΦΒ πάρκο

Η επιλογή της περιοχής μπορεί να γίνει μέσα από τον διαδραστικό χάρτη (interactive map) του προγράμματος.

Εναλλακτικά, ένα δεν ανοίγει ο διαδραστικός χάρτης (συχνό πρόβλημα που αναφέρεται από τους χρήστες), υπάρχει η δυνατότητα εισαγωγής απευθείας των συντεταγμένων του σημείου από την καρτέλα geographical coordinates.

루 Geographical site pa	rameters, new site	- 🗆 X
Geographical Coordin	ates Monthly meteo Interactive Map	
Location Site name	Set from coordinates	Please import the monthly meteo data (from Meteonorm, Nasa, PVGIS, NREL, Solcast or manually)
Country	Greece V Region Europe V	
Geographical	Coordinates	Meteo data Import
Constantial d		Meteonorm 8.1
with success fro	om the map.	O NASA-SSE
	Decimal Deg. Min. Sec.	O PVGIS TMY Version 5.2 V
Latitude	38.2616 [°] 38 15 41 (+ = North, - = South hemisph.)	O NREL / NSRDB TMY
Longitude	21.8835 [9]21 53 0 (+ = East, - = West of Greenwich)	O Solcast TMY
Altitude	998 M above sea level	O Solar Anywhere O Ten
Time zone	2.0 Corresponding to an average difference	Import
	Legal Time - Solar Time = 0h 33m	
	Get from name	import conthiy data, as
Import	Export line Export table	Cancel

Μετά τον καθορισμό του σημείου πατάμε Import.

Στην καρτέλα Monthly Meteo εμφανίζονται πληροφορίες για τις καιρικές συνθήκες που επικρατούν στην περιοχή κατά τη διάρκεια του έτους. Πατάμε ΟΚ.

ata source	Meteonorm 8						
		.1 (2005-2013), Sat	i=100%]
	Global horizontal irradiation	Horizontal diffuse irradiation	Temperature	Wind Velocity	Linke turbidity	Relative humidity	
	kWh/m²/mth	kWh/m²/mth	°C	m/s	[-]	%	
January (66.9	30.1	3.1	2.19	2.564	75.1	Required Data
February	82.1	35.5	4.3	2.49	2.886	73.5	
March (128.0	55.7	7.4	2.49	3.399	66.6	Average Ext. Temperature
April (159.3	67.8	10.5	2.30	3.934	61.3	Evtra data
May (205.2	73.6	15.5	2.29	3.686	55.1	Horizontal diffuse irradiation
June (224.6	68.9	19.8	2.29	3.271	49.8	Wind velocity
July (225.3	56.3	23.0	2.39	3.270	43.5	Linke turbidity
August	206.0	62.5	23.0	2.50	3.291	42.8	Relative humidity
September (150.5	51.2	17.8	2.10	3.219	55.3	
October (109.4	47.5	13.3	1.90	3.046	65.5	-Irradiation units-
November	70.6	30.6	8.6	1.79	2.823	73.4	O kWh/m²/day
December	57.3	26.0	4.4	1.89	2.637	77.4	KWh/m²/mth M3/m²/day
Year 👩	1685.1	605.6	12.5	2.2	3.169	61.6	O MJ/m²/mth

<u>Βήμα 3</u>: Καθορίζουμε το folder αποθήκευσης του project και πατάμε save.

PVsyst		-		Х
Save the geog	praphical site file			
Description				
	Pitítsa;Greece;Europe			
File name				
Pitítsa_MN81				
Directory	C:\Users\User\PVsyst7.0_Data\Sites			
	X Cancel	Ľ	Save	

Global horizontal irradiation Horizontal diffuse irradiation Temperature Wind Velocity Linke turbidity Relative humidity January 66.9 30.1 3.1 2.19 2.564 75.1 January 66.9 30.1 3.1 2.19 2.266 72.5 March 128.0 55.7 7.4 2.49 3.939 66.6 April 19.3 67.8 10.5 2.30 3.934 61.3 June 224.6 68.9 19.8 2.29 1nto Extra data July 225.3 56.3 23.0 2.39 A synthetic hourly meteo file has also been generated Do you want to save it? Wind velocity August 105.5 1.3.3 1.90 1.90 Tradiation Tradiation intradiation									
kWh/m²/mb kWh/m²/mb °C m/s [-] % January 66.9 30.1 3.1 2.19 2.564 75.1 February 82.1 35.5 4.3 2.49 2.866 25.5 April 129.0 55.7 7.4 2.49 3.934 66.6 April 19.3 67.8 10.5 2.30 3.934 61.3 May 205.2 73.6 15.5 2.29 10.6 2.49 10.93 66.6 June 224.6 68.9 19.8 2.29 10.6 2.49 10.75 10.75 10.75 10.75 10.75 10.75 10.75 10.75 10.75 10.75 10.75 10.75 10.75 10.75 10.75 10.95		Global horizontal irradiation	Horizontal diffuse irradiation	Temperature	Wind Velocity	Linke turbidity	Relative humidity		
January 56.9 30.1 5.1 2.19 2.564 75.1 Required Data February 82.1 55.5 4.3 2.49 2.866 73.5 Global horizontal irradation March 128.0 55.7 7.4 2.49 3.399 66.6 April 199.3 67.8 10.5 2.30 3.994 61.3 June 224.6 68.9 19.8 2.29 Info Info Info July 225.3 56.3 23.0 2.39 A synthetic houry meteo file has also been generated be trained. Wind velocity August 206.0 62.5 23.0 2.50 2.50 Protect and to not save it? Vind velocity October 109.4 47.5 13.3 1.90 Info radation units		kWh/m²/mth	kWh/m²/mth	°C	m/s	[-]	%		
February 82.1 35.5 4.3 2.49 2.886 72.5 March 128.0 55.7 7.4 2.49 3.399 66.6 Image: Constraint of the state of the s	anuary	66.9	30.1	3.1	2.19	2.564	75.1		Required Data
March 128.0 55.7 7.4 2.49 3.399 66.6 Image: Constraint of Constraint o	ebruary	82.1	35.5	4.3	2.49	2.886	73.5		Global borizontal irradiation
April 199.3 67.8 10.5 2.30 3.934 61.3 May 205.2 73.6 15.5 2.29 Info Extra data June 224.6 66.9 19.8 2.30 2.39 May 205.2 Mind velocity Wind velocity July 225.3 56.3 23.0 2.39 A synthetic hourly meteo file has also been generated Wind velocity Linke turbidity September 150.5 51.2 17.8 2.10 Do you want to save it? radation units	larch	128.0	55.7	7.4	2.49	3.399	66.6		Average Ext. Temperature
May 205.2 73.6 15.5 2.29 Info X Horizontal diffuse irradiation June 224.6 68.9 19.8 2.29 Mind Velocity Wind velocity July 225.3 56.3 23.0 2.39 Wind velocity Unite turbidity August 206.0 62.5 23.0 2.50 Do you want to save it? Relative humidity October 109.4 47.5 13.3 1.90 Tradition with the save it? Tradition with the save it?	pril	159.3	67.8	10.5	2.30	3.934	61.3		Extra data
June 224.6 68.9 19.8 2.29 Wind velocity July 225.3 56.3 23.0 2.39 Wind velocity Use August 206.0 62.5 23.0 2.50 Particle hours meteo file has also been generated Use turbidity Relative humidity 2.10 1.90 Particle humidity redation units	lay	205.2	73.6	15.5	2.29	Info			Horizontal diffuse irradiation
July 225.3 56.3 23.0 2.39 August 266.0 62.5 23.0 2.50 A synthetic houry meteo file has also been generated to you want to save it? Linke turbidity Relative humidity October 109.4 47.5 13.3 1.90 radation units	une	224.6	68.9	19.8	2.29	ino			Wind velocity
August 206.0 62.5 23.0 2.50 Annual control of the law book of generative function of the law book of th	uly	225.3	56.3	23.0	2.39		netic hourly meteo file h	as also been generated	Linke turbidity
September 150.5 51.2 17.8 2.10 Do you want to save it? October 109.4 47.5 13.3 1.90 radation units	lugust	206.0	62.5	23.0	2.50		reactionary meteo me na	is also been generated	Relative humidity
October 109.4 47.5 13.3 1.90 radiation units-	eptember	150.5	51.2	17.8	2.10	Do you	i want to save it?	_	
	ctober	109.4	47.5	13.3	1.90				radiation units
November 70.6 30.6 8.6 1.79 Not 70 to kWh/m ² /day	ovember	70.6	30.6	8.6	1.79			Ναι Όχι	kWh/m²/day
December 57.3 26.0 4.4 1.89	ecember	57.3	26.0	4.4	1.89				M1/m²/day
Year 👔 1685.1 605.6 12.5 2.2 3.169 61.6	'ear 🕜	1685.1	605.6	12.5	2.2	3.169	61.6		O MJ/m²/mth
O W/m ²									O W/m ²
Clobal borizontal irradiation year-to-year variability 5 3%									() Classes Taday VA

<u>Βήμα 4</u>: Εμφανίζεται το παρακάτω μήνυμα, πατάμε save.

<u>Βήμα 5</u>: Εμφανίζεται η αρχική σελίδα του project και πατάμε save.

Project: New.PRJ				- 0
ject Site Variant User notes	5			
Project	🛨 New 📂 Los	Save Import Deck Export Strong T	Delete Lient	/ 🤅
Project's name	New Project		Client name Not defined	
Site File	Pititsa_MN81.SIT	Meteonorm 8.1 (2005-2013), Sat=100% Greece	🗟 📂 🛨	
Meteo File	Pititsa_MN81_SYN.MET	Meteonorm 8.1 (2005-2013), Sat=100% Synthetic	c 0k~ 🧟 🗐 🖓	
		Selected Meteo file: "Pititsa_MN81_SYN.MET". Please save the project.		
Variant	t New 💾 Sav	e 💀 Import 📅 Delete 🔯 Manage		/ (
Variant n° VCO	: New simulation variant	~	Results overview	
			System kind	No 3D scene defined, no shadings
Main parameters	Optional	Simulation	System Production	0.00 MWh/yr
Orientation	Horizon		Specific production	0.00 kWh/kWp/yr
System	Near Shadings	Run Simulation	Normalized production	0.00 kWh/kWp/day
Detailed losses	Module lavout	C Advanced Simul	Array losses System losses	0.00 kWh/kWp/day
©	0		-,	,
 Self-consumption 	 Energy management 	Report		
Storage	Economic evaluation	Detailed results		
-				

	New 📂 Loa	d 💾 Save 😱 Import 📑 Export 🔯 Project settings	📅 Delete 👗 Client	/
ject's name	New Project		Client name Not defined	
File	Pititsa_MN81.SIT	Meteonorm 8.1 (2005-2013), Sat=100% Greece	a 📂 🛨	
teo File	Pititsa_MN81_SYN.MET	Meteonorm 8.1 (2005-2013), Sat=100% Synt		
		Please choose the plane orientation !	>	
riant	💼 New 💾 Sav	e 🗼 Import 🏢 Delete 🗱 Manage		1
iant nº VC	20 : New simulation variant	\checkmark	Results overview System kind	No 3D scene defined, no shadings
parameters	Optional	Simulation	System Production	0.00 MWh/yr
	Horizon	Pup Simulation	Specific production Performance Ratio	0.00 kWh/kWp/yr 0.00
Orientation		Kun Sinnakoon	Normalized production	0.00 kWh/kWp/day
Orientation System	Near Shadings		Array insses	0.00 kwh/kwp/day
Orientation System Detailed losses	Near Shadngs Module layout	C Advanced Simul.	System losses	0.00 kwn/kwp/day
Orientation System Detailed losses Self-consumption	Near Shadngs Module layout Energy management	🗘 Advanced Simul.	System losses	0.00 kwn/kwp/day
Orientation System Detailed losses Self-consumption Storage	(iiii) Near Shadings (iii) Module layout (iii) Energy management (iii) Economic evaluation	Advanced Smul.	System losses	u.uu kwn/kwp/day

<u>Βήμα 6</u>: Επιλέγουμε προσανατολισμό.

Σε αυτό το σημείο γίνεται η επιλογή του τύπου των βάσεων (σταθερές βάσεις, ιχνηλάτες κτλ.), του προσανατολισμού και της κλίσης.

Corientation, Variant "New simulation variant"		- 🗆 X
Field type Fixed Tilted Pl	ane 🗸	
Field parameters Plane tilt 30.0 ^o Azimuth 0.0 ^o	Tilt 30°	Azimuth 0°
	We	st East South
- Quick optimization		
Optimization with respect to vearly irradiation yield		
O Summer (Apr-Sep) O Winter (Oct-Mar)	1.2 1.0	ar 1.2
Yearly meteo yield Transposition Factor FT 1.15 Loss with respect to optimum -0.2% Global on collector plane 1946 kWh/m²	0.8 FTranspos.= 1.15 0.6 30 Plane tilt	90 -90 -60 -30 0 30 60 90
		X Cancel

<u>Βήμα 7</u>: Κατόπιν καθορίζονται τα δομικά και τα ηλεκτρικά στοιχεία του ΦΒ πάρκου με την επιλογή System.

roject: Pitítsa_Project.PRJ				- 0
Project	notes	Save 🚽 Import 🕞 Export 🔯 Project settings	Delete	1
Project's name	New Project	·	Client name Not defined	
ite File	Pititsa_MN81.SIT	Meteonorm 8.1 (2005-2013), Sat=100% Greece	a 📂 🛨	
leteo File	Pititsa_MN81_SYN.MET	Meteonorm 8.1 (2005-2013), Sat=100% Synthe	etic 0 k 🗸 🗋 🕜	
		Please define the system !	$\mathbf{>}$	
'ariant	한 New 💾 Save	import 🛗 Delete		1
ariant n° 🛛	/C0 : New simulation variant	\checkmark	Results overview System kind	No 3D scene defined, no shadings
Main parameters Orientation System	Optional Orizon One Shadings	Simulation Run Simulation	System Production Specific productor Performance Ratio Normalized produc	0.00 MWh/yr 0.00 kWh/kWp/yr 0.00 kWh/kWp/day tion 0.00 kWh/kWp/day
 Detailed losses Self-consumption 	 Module layout Energy management 	 Advanced Simul. Report 	Array losses System losses	0.00 kWh/kWp/day 0.00 kWh/kWp/day
Storage	Economic evaluation	Detailed results		
System overview				-Exit

Καθορίζεται η ισχύς του ΦΒ πάρκου, τα χρησιμοποιούμενα πάνελ και επιλέγεται ο αντιστροφέας (inverter). Σε περίπτωση που ο αντιστροφέας δεν είναι συμβατός, το πρόγραμμα βγάζει μήνυμα, όπως φαίνεται παρακάτω:

			2	List of subarrays		6
,	C	Ο ΧΡΗΣΤΗ <u>Σ ΚΑΘΟΡΙΖΕΙ ΤΗΝ ΙΣΧΥ ΤΟ</u>	У ФВ ПАРКОУ			
Sub-array name and Orientation	Pre-sizing Help			🛨 🖶 🖓 🗸 👘 👲		
Name PV Array	O No sizing	Enter planned power 🔘	400000. KWp		#Mod	#Stri
Drient. Fixed Tilted Plane Azimuth	0° ✓ Resize	or available area(modules) O	1942140 m²	Name	#Inv.	#MPI
elect the BV module		TO TIPOTPAMMA BLAZEI THN EKTIN	ΙΩΜΕΝΗ ΕΠΙΦΑΝΕΙΑ	PV Array		
		Approx. needed modules 87	9121	AEG - AS-M1443-H-455	17	517
				SMA - Sunny Central 900CP	XT 342	1
AEG V 455 Wp 35V Si-mono A	S-M1443-H-455 Since 20	20 Manufacturer 2020	C Open			
Use optimizer						
Sizing voltages : Vmpp	60°C) 36.3 V					
Voc (-	0°C) 54.4 V					
V0C (-)	0 C) 34.4 V					
Select the inverter			50 Hz			
Available Now V Output voltage 405 V Tri 50Hz	Ο ΧΡΗΣΤΗΣ ΕΙΣΑΓΕΙ ΤΗ ΜΑΡΚΑ	KAI THN IΣXY TOY INVERTER	🔽 60 Hz			
SMA V 900 kW 596 - 950 V TL 50						
		Since 2012	C Open			
Nb. of inverters 342 🗘 🗹 Operating volt	age: 596-950 V Global Inverte	er's power 307800 kWac	<u>O</u> Open			
ib. of inverters 342 🗘 💟 Operating volt Input maximum volt	age: 596-950 V Global Inverte age: 1000 V	er's power 307800 kWac	<u>Q</u> Open			
b. of inverters 342 🗘 Verating volt Input maximum volt	age: 596-950 V Global Inverte age: 1000 V TO NPOI	er's power 307800 kWac		'ERTER		
tb. of inverters 342 🗘 💟 Operating voli Input maximum voli	age: 596-950 V Global Inverte age: 1000 V TO NPON	Since 2012 er's power 307800 kWac PAMMA YIIOAEIKNYEI THN KATA.		FERTER		
No. of inverters 342 C Operating vol Input maximum vol Design the array Humber of modules and strings	age: 596-950 V Global Inverte age: 1000 V TO NPOI Operating conditions	PAMMA YIIOAEIKNYEI THN KATA The array MPP voltage may	Q Open	Global system summary		
wb, of inverters 342 Coperating vol Input maximum vol Design the array -Humber of modules and strings	age: 596-950 V Global Inverte age: 1000 V TO ΠΡΟΙ Operating conditions Vmpp (60°C) 618 V	shoe all c s's power 307800 kWac PAMMA YIIOAEIKNYEI THN KATA The array MPP voltage may inverter minimum voltage fi	C Open	ERTER Global system summary Nb. of modules 879121		
 at a constraint of inverters 	age: 596-950 V Global Inverte age: 1000 V TO ΠΡΟΙ Operating conditions Vmpp (60°C) 618 V Vmpp (20°C) 719 V Vmpc (20°C)	Since Joint ar's power 307800 kWac TPAMMA YFIOAEIKNYEI THIN KATA The array MPP voltage may inverter minimum voltage fit	C Open	CRTER Global system summary Nb. of modules 879121 Module area 1942140	m ²	
Ab, of inverters 342 S Operating vol Input maximum vol Design the array Humber of modules and strings fod, in series 17 C Detiveen 17 and 18 ?	age: 596-950 V Global Inverte age: 1000 V TO ПРОГ Operating conditions Vmpp (60°C) 618 V Vmpp (20°C) 719 V Voc (-10°C) 925 V	Since 2012 ar's power 307800 kWac PAMMA YNOAEIKNYEI THN KATA The array MPP voltage may inverter minimum voltage fi	C Open	Global system summary Nb. of modules 879121 Module area 194240 Nb. of inverters 342		
vb. of inverters 342 Coperating vol Input maximum vol Design the array -Number of modules and strings 4od. in series 17 C between 17 and 18 4b. strings 51713 Detween 39793 and 52019	age: 596-950 V Global Inverter age: 1000 V TO ΠΡΟΓ Operating conditions Vmpp (60°C) 618 V Vmpp (20°C) 719 V Vvoc (1°C') Voc (1°C') 925 V Plane irradiance	Since Joint s's power 307800 kWac PAMMA YIOAEIKNYEI THIN KATA The array MPP voltage may inverter minimum voltage find O Max. in data	AAHAOTHTA TOY INV not attain the or full power.	ERTER Global system summary Nb. of modules 879121 Module area 1942140 Nb. of invertes 342 Nominal PV Power 400000	m² kWp	
4b. of inverters 342 Image: Constraint of the second seco	age: 596-950 V Global Inverte age: 1000 V TO INPOI Operating conditions Wmpp (60°C) 618 V Vmpp (20°C) 719 V Voc (-10°C) Plane irradiance 1000 W/m² Impp (50°C) 57353 A	Since Joint Since	C Open	ENTER Global system summary Nb. of modules 879121 Module area 1942140 No. of inverters 342 Nominal PV Power 400000 Maximum PV Power 399560 Maximum PV Power 399560	m² kWp kWDC kWAC	
vb. of inverters 32 Image: Constraint of the array of	S96-950 V Global Inverte age: 1000 V TO ПРОГ Operating conditions Vmpp (60°C) 618 V Vmpp (20°C) 719 V Voc (-10°C) 925 V Plane Irradiance 1000 W/m² Impo (STC) 56735 A Isc (STC) 591597 A	Since Joint ar's power 307800 kWac The array MPP voltage may inverter minimum voltage fit O Max. in data Max. operating power 3 (at 1000 W/m² and 50°C)	C Open AAHAOTHTA TOY INV not attain the or full power. S STC S4876 kW	CRTER Global system summary Nb. of modules 879121 Module area 1942140 Nb. of inverters 342 Nominal PV Power 309564 Nominal AC Power 307800 Prom ratio 1.3200	m² kWp kWDC kWAC	
b. of inverters 32 Image: Constraint of the array Jesign the array Image: Constraint of the array Image:	age: 596-950 V Global Inverte age: 1000 V TO ΠΡΟΙ Operating conditions Vmpp (60°C) 618 V Vmpp (60°C) 719 V Voc (-10°C) Voc (-10°C) 925 V Plane tradiance Impo (STC) 567353 A Lsc (STC) Lsc (STC) 591597 A Lsc (at STC)	Since Soliz **s power 307800 kWac *PAMMA YTOAEIKNYEI THIN KATA The array MPP voltage may inverter minimum voltage fi O Max. in data (Max. operating power (at 1000 Win² and 50*C) Array nom. Power (STC) 44	Q Open ANHAOTHTA TOY INV not attain the frid power. STC Stars6 kW Stars6 kW	CINER Ciobal system summary Nb. of modules 879121 Module area 1942140 Nb. of inverters 342 Nominal PV Power 3098564 Maximum PV Power 3098504 Nominal AC Power 307800 Phom ratio 1.300	m² kWp kWDC kWAC	

Επιλέγεται άλλος αντιστροφέας, μέχρι να βρεθεί ο κατάλληλος.

Sub-allay			2	List of subarrays		6
-Sub-array name and Orientation	Pre-sizing Help	Enter planned power	400000 kwp 2		<u>*</u>	
Orient. Fixed Tilted Plane Azimuth (o o ✔ Resize	or available area(modules)	1942140 m ²	Name	#Mod #Inv.	#Stri #MP
Select the PV module Available Now Filter All PV modules AEG S 455 Wp 35V S-mono AS-4 Use optimizer Sizing voltages : Wrop (6/ Voc (-10 Select the inverter Available Now Output voltage 385 V Tri 50Hz SMA 2200 KW 570 -950 V TL 50Hz Nb. of inverters 152 © Operating voltag	11443+H-455 Since 20 *C) 36.3 V C) 54.4 V DHz Sumv Central 2200 e: 570-950 V Global Inverter e: 100 V	Approx. needed modules 8 20 Manufacturer 2020 Since 2015 st's power 334400 kWac	79121	PP Array A EG - AS-M1443H-455 SMA - Sunny Central 2200	17 152	517 1
Design the array Number of modules and strings	Operating conditions			Global system summary		
Mod. in series 17 🖕 🗅 between 16 and 18	Vmpp (60°C) 618 V Vmpp (20°C) 719 V Voc (-10°C) 925 V			Nb. of modules 87912 Module area 194214 Nb. of inverters 15	21 40 m² 52	
Nb. strings 51713	Plane irradiance 1000 W/m² impp (STC) 567353 A isc (STC) 591597 A	O Max. in data Max. operating power (at 1000 W/m ² and 50°C)	STC 364876 kW	Nominal PV Power 40000 Maximum PV Power 39956 Nominal AC Power 33440	00 kWp 64 kWDC 00 kWAC	
Pnom ratio 1.20 Show sizing				Phom rano 119		

Στην επιλογή Horizon μπορούμε να δούμε την πορεία του ήλιου για τη συγκεκριμένη τοποθεσία καθ' όλη τη διάρκεια του έτους.

t Site Verinet Use				
roject	New Proto	d 💾 Save 🔊 Import 🕞 Export 📫 Project settings 🍈 Delet	te Clent	1
. oject				·
roject's name	New Project	Ch	ent name Not defined	
te File	Pititsa_MN81.SIT	Meteonorm 8.1 (2005-2013), Sat=100% Greece	🗟 📂 主	
eteo File	Pit/tsa_MN81_SYN.MET	Meteonorm 8.1 (2005-2013), Sat=100% Synthetic 0		
		Ready for simulation		
ariant	📩 New 📑 Sav	e 🛃 Import 🏢 Delete 🔯 Manage		/
riant n°	VC0 : New simulation variant	\checkmark	Results overview	No 20 anno defend as
			System kind	shadings
lain parameters	Optional	Simulation	System Production	0.00 MWh/yr
 Orientation 	* O Horizon	Pup Simulation	Specific production Performance Ratio	0.00 kWh/kWp/yr 0.00
System	Near Shadings *		Normalized production	0.00 kWh/kWp/day
Detailed losses	Module layout	D Advanced Simul.	Array losses System losses	0.00 kWh/kWp/day 0.00 kWh/kWp/day
	Energy management	Report		
Self-consumption				
Self-consumption Storage	Economic evaluation	ind Detailed results		
 Self-consumption Storage 	Economic evaluation	Detailed results		
Self-consumption Storage	Economic evaluation	ind Detailed results		

<u>Βήμα 8</u>: Καθορίζουμε και την σκίαση. Πατάμε Near Shadings.

Project: Pititsa_Project.PR] r notes			- 0 >
Project	🛨 <u>N</u> ew 📂	Load 💾 Save 🔊 Import 🍙 Export 🔯 Project setting	gs 🛅 <u>D</u> elete 🚨 <u>C</u> lent	/ 0
Project's name	New Project		Client name Not defined	
Site File	Pititsa_MN81.SIT	Meteonorm 8.1 (2005-2013), Sat=100% Greece	la 📂 🛨	
Meteo File	Pitítsa_MN81_SYN.MET	Meteonorm 8.1 (2005-2013), Sat=100%	Synthetic 0 k 🗸 🗎 🖓	
		Ready for simulation		
Variant	🗭 New 🛄	Saus Dimovet 📅 Dalata 📅 Manana		1.0
· ciricine				/ •
Variant n°	VC0 : New simulation variant	~	System kind	No 3D scene defined, no shadings
Main parameters	Optional	Simulation	System Production	0.00 MWh/yr
 Orientation 	* Orizon	Due Genelation	Specific production Performance Ratio	0.00 kWh/kWp/yr 0.00
System	Near Shadings *		Normalized production	0.00 kWh/kWp/day
Detailed losses	Module layout	Advanced Simul.	Array losses System losses	0.00 kWh/kWp/day 0.00 kWh/kWp/day
Self-consumption	Energy management	Report		
Storage	Economic evaluation	Detailed results		
-				

Και μετά No Shadings.

ኖ Near Shadings definiti	ion, Variant "New simulation	variant"			—		х
Near shadings 3D scer	ne						
Comment	New shading scene						
	Cor	struction / Perspect	ve	•	Import Export		
Compatibility with	Orientation and System	parameter 3D scene	No shadii	ngs defined for th	is simulation	۱.	
Active area	1942140 m ²	Undefined					
Fields tilt	30.0°	Undefined					
Fields azimuth	0.0°	Undefined					
Shading factor tab	le 📃 🔼	Graph					
 OSE in simulation No Shadings Dincar chadings 			Calculation mode	e			
O According to module	e strings						
O Detailed electrical ca	alculation (acc. to module lay	vout)					
Q System overvie	ew Prir	it	×	Cancel	-	🖊 ок	

<u>Βήμα 9</u>: Ξεκινάμε την προσομοίωση πατώντας Run Simulation.

Project: Pititsa_Project.PR	J			- 0
ect Site Variant Use Project	r notes 🛃 New 🚬	🌶 Load 💾 Save 🔊 Import 🍡 Export 🔯 Project settings 🗂	Delete Dient	1
Project's name	New Project	1	Client name Not defined	
Site File	Pititsa_MN81.SIT	Meteonorm 8.1 (2005-2013), Sat=100% Greece	🗟 📂 主	
Meteo File	Pititsa_MN81_SYN.MET	Meteonorm 8.1 (2005-2013), Sat=100% Synthetic	ok⊻ 👌 🕄	
		Ready for simulation		
				2
variant	<u>New</u>	Save Manage		
Variant n°	VC0 : New simulation variant		Results overview System kind	No 3D scene defined, no shadings
Main parameters	Optional	Simulation	System Production	0.00 MWh/vr
Orientation	* Horizon		Specific production	0.00 kWh/kWp/yr
System	Near Shadings	* Run Simulation	Normalized production	0.00 kWh/kWp/day
Detailed lesses	Madula Invent	C Advanced Simul	Array losses	0.00 kWh/kWp/day
Detailed losses		Advanced Sintal.	Systemosses	0.00 kwijkwpjday
Self-consumption	Energy management	Report		
Storage	Economic evaluation	Detailed results		

<u>Βήμα 10</u>: Πατώντας την επιλογή report εξάγεται η αναφορά με όλα τα στοιχεία του project.

<u>Βήμα 11</u>: Πατάμε save για να σωθεί το project με όλα τα στοιχεία του.

Υπάρχει και η επιλογή εξαγωγής της αναφοράς σε pdf.

6. ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΜΕΛΕΤΗΣ

6.1 Έλεγχος περιθωρίου απορρόφησης ισχύος διασυνδεμένου συστήματος στην περιοχή εγκατάστασης του ΦΒ πάρκου

Η δυνατότητα απορρόφησης ισχύος από το δίκτυο στην περιοχή που επιθυμούμε την εγκατάσταση του ΦΒ πάρκου αποτελεί πλέον τον πρώτο παράγοντα που πρέπει να ελεγχθεί. Ανάλογα με την περιοχή υπάρχει πλέον περιορισμός ή αδυναμία του ηλεκτρικού δικτύου να δεχθεί άλλη ηλεκτρική ενέργεια από ΑΠΕ. Για το λόγο αυτό στην ιστοσελίδα <u>https://apps.deddie.gr/WebAPE/main.html</u> του ΔΕΔΔΗΕ είναι δυνατός ο έλεγχος διαθεσιμότητας περιθωρίου. Όπως φαίνεται και από τις παρακάτω εικόνες, στην περιοχή που θα γίνει η εγκατάσταση υπάρχει διαθεσιμότητα, αν και περιορισμένη

Αναζήτηση ΑΠΕ	
Επιλέξτε τον Καλλικρατικό Δήμο που σας ενδιαφέρει:	Επιλέξτε ένα από τα παρακάτω κριτήρια σχετικά με τα περιθώρια των σταθμών που δεσμεύουν ισχύ:
Περιφέρεια:	Ο Σε λειτουογία με σύμβαση και με οριστική
ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ 🗸	προσφορά
	🔿 Σε λειτουργία και με σύμβαση
Περιφερειακή Ενότητα:	Σε λειτουργία
ΑΙΤΩΛΟΑΚΑΡΝΑΝΙΑΣ 🗸	
Δήμος:	 Σινολικός Χάστ
ΘΕΡΜΟΥ	

Εικόνα 6.1 Αναζήτηση διαθεσιμότητας στον δήμο που ανήκει η έκταση της μελέτης

Στην Εικόνα 6.2, στο χάρτη με παραλληλόγραμμο έχει σημειωθεί ο υποσταθμός στον οποίο θα κατευθύνεται η παραγόμενη ηλεκτρική ενέργεια από το πάρκο.

6.2 Οι παράμετροι της εγκατάστασης ισχύος 500kW

Ορίστηκαν οι παράμετροι της μελέτης, δηλαδή οι συντεταγμένες, η ισχύς, τα πάνελ και οι αντιστροφείς. Τα χαρακτηριστικά των πάνελ και των αντιστροφέων καθώς και η ισχύς του ΦΒ πάρκου φαίνονται στον Πίνακας 6-1

Στο Σχήμα 6.1 φαίνεται η διασύνδεση των αντιστροφέων με τα πάνελ και το δίκτυο.

6.3 Παρουσίαση των 5 διαφορετικών σεναρίων για την εγκατάσταση των 500kW

Για τις ίδιες παραμέτρους «έτρεξαν» πέντε διαφορετικές εκδοχές όσον αφορά τη μέθοδο υποστύλωσης των πάνελ. Στη συνέχεια παρουσιάζονται τα αποτελέσματα από τα πέντε αυτά διαφορετικά σενάρια.

6.3.1 Σενάριο 1: Σταθερές βάσεις με γωνία κλίσης 30°

Σε αυτή την μελέτη χρησιμοποιήθηκαν σταθερές βάσεις με γωνία κλίσης 30° σταθερή καθ' όλη τη διάρκεια του έτους.

Ο παρακάτω πίνακας δίνει τα γεωγραφικά χαρακτηριστικά της περιοχής και τα ηλεκτρικά χαρακτηριστικά του ΦΒ πάρκου.

Πίνακας 6-2 Τα δε	εδομένα της μελέτης ΄	των 500kW για α	σταθερές βάσεις με κλίση 30º
	Project: ΣΤΑ	ΘΕΡΕΣ ΒΑΣΕΙΣ	
	Variant: New	simulation variant	
PVsyst V7.3.2 VC0, Simulation date: 29/03/23 01:33 with v7.3.2			
	Projec	t summary —	
Geographical Site	Situation		Project settings
PALIOPLATANOS	Latitude	38.57 °N	Albedo 0.20
Greece	Longitude	21.63 °E	
	Time zone	UTC+3	
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), Sat	=100% - Synthetic System	n summary —	
Grid-Connected System	No 3D scene de	efined, no shadings	
PV Field Orientation Fixed plane Tilt/Azimuth 30 / 0	Near Shadings No Shadings		User's needs Unlimited load (grid)
System information			
PV Array		Inverters	
Nb. of modules	1152 units	Nb. of units	4 units
Pnom total	518 kWp	Pnom total	500 kWac
		Pnom ratio	1.037

Στον Πίνακας 6-3 φαίνεται ο ορισμός της γωνίας κλίσης των πάνελ (30°)

Πίνακας 6-3 Ορισμός της γωνίας κλίσης για σταθερές βάσεις (500kW) General parameters No 3D scene defined, no shadings Grid-Connected System **PV Field Orientation** Sheds configuration Orientation Models used Fixed plane No 3D scene defined Transposition Perez Tilt/Azimuth 30/0° Diffuse Perez, Meteonorm Circumsolar separate Near Shadings Horizon User's needs Free Horizon No Shadings Unlimited load (grid)

Ο Πίνακας 6-4 δίνει την ετησίως παραγόμενη ηλεκτρική ενέργεια, το βαθμό απόδοσης του συστήματος και λεπτομερή ανά μήνα καταγραφή της παραγόμενης ηλεκτρικής ενέργειας από τα διάφορα είδη ακτινοβολιών (βλέπε 4. ΑΠΩΛΕΙΕΣ ΣΤΑ ΦΩΤΟΒΟΛΤΑΪΚΑ ΠΑΝΕΛ) και της εγχεόμενης ηλεκτρικής ενέργειας στο δίκτυο.

Πίνακας 6-4 Παραγόμενη ηλεκτρική ενέργεια ετησίως για σταθερές βάσεις και κλίση 30º(500kW)

Ακολουθεί επεξήγηση των συμβολισμών στον Πίνακας 6-4:

- <u>GlobHor:</u> Οριζόντια παγκόσμια ακτινοβολία
- <u>DiffHor:</u> Οριζόντια διάχυτη ακτινοβολία
- <u>Tamb:</u> Θερμοκρασία περιβάλλοντος,
- <u>GlobInc:</u> Παγκόσμια ακτινοβολία στο επίπεδο του συλλέκτη
- <u>GlobEff:</u> Πραγματική ακτινοβολία, μετά από όλες τις οπτικές απώλειες (σκιάσεις, γωνία πρόσπτωσης, ρύπανση)
- <u>Earray</u>: Πραγματική ενέργεια στην έξοδο του πάνελ
- <u>Egrid:</u> Εγχεόμενη ενέργεια στο δίκτυο ηλεκτρικής ενέργειας
- <u>PR:</u> Βαθμός απόδοσης

Ακολουθεί το διάγραμμα απωλειών ισχύος

Διάγραμμα 6.1 Διάγραμμα απωλειών ισχύος με σταθερές βάσεις και κλίση 30º (500kW)

Ακολουθεί επεξήγηση των συμβολισμών στο Διάγραμμα 6.1

- Global Horizontal irradiation:
- Οριζόντια παγκόσμια ακτινοβολία
- <u>Global Incident in coll. Plane:</u> Παγκόσμια ακτινοβολία στο επίπεδο του συλλέκτη
- <u>IAM factor on global:</u> Μείωση της ακτινοβολίας που φθάνει πραγματικά στην επιφάνεια των φωτοβολταϊκών κυττάρων, σε σχέση με την ακτινοβολία υπό κανονική πρόσπτωση, λόγω των αντανακλάσεων που αυξάνονται με τη γωνία πρόσπτωσης.
- Effective irradiation on collectors: Ενεργή ακτινοβολία στο συλλέκτη
- <u>Pv conversion</u>: Μετατροπή του πάνελ

- <u>Array nominal energy:</u> Ονομαστική ενέργεια ΦΒ σειράς
- <u>PV loss due to irradiance level:</u> Απώλεια πάνελ λόγω επιπέδου ακτινοβολίας
- <u>PV loss due to temperature</u> Απώλεια πάνελ λόγω θερμοκρασίας
- <u>Module quality loss:</u> Απώλεια ποιότητας μονάδας: Αυτή η απώλεια αναφέρεται στις θετικές και αρνητικές ανοχές Wp των μονάδων
- <u>Mismatch loss, modules and strings:</u> Απώλεια μη ταιριάσματος συστοιχίας μονάδων: Οι απώλειες μη ταιριάσματος είναι συνάρτηση της ηλεκτρικής ομοιομορφίας παραγωγής και της δέσμευσης αυτής.
- <u>Ohmic wiring loss</u> Απώλεια ωμικής καλωδίωσης. Αυτή η απώλεια οφείλεται στην επιλογή καλωδίων, αντιπροσωπεύοντας την απώλεια στην πλευρά DC μεταξύ της μονάδας προς τον μετατροπέα μέσω καλωδίων DC.
- Inverter loss during operation: Απώλεια μετατροπέα κατά τη λειτουργία
- Inverter loss over nominal inv. Power: Απώλειες μετατροπέα στην ονομαστική ισχύ λειτουργίας
- Inverter loss due to max input current Απώλειες μετατροπέα από το μέγιστο ρεύμα εισόδου
- Inverter loss over nominal input current: Απώλειες μετατροπέα πάνω από το ονομαστικό ρεύμα εισόδου
- Inverter loss due to power threshold: Απώλειες μετατροπέα λόγω του κατωφλίου ισχύος
- Inverter loss due to voltage threshold: Απώλειες μετατροπέα λόγω του κατωφλίου τάσης
- Night consumption: Κατανάλωση κατά τη διάρκεια της νύκτας

Τέλος, παρατίθενται και δύο διαγράμματα (Διάγραμμα 6.2και Διάγραμμα 6.3) όπου φαίνεται η παραγόμενη ηλεκτρική ενέργεια σε σχέση με την ακτινοβολία και την ισχύ των πάνελ σε ετήσια βάση.

Διάγραμμα 6.2 Εγχεόμενη ενέργεια σε συνάρτηση με την άμεση ακτινοβολία το πάνελ για σταθερές βάσεις και κλίση 30° (500kW)

Διάγραμμα 6.3 Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για σταθερές βάσεις και κλίση 30°(500kW)

6.3.2 Σενάριο 2: Σταθερές βάσεις με αλλαγή γωνίας κλίσης χειμώνα - καλοκαίρι

Σε αυτή την μελέτη χρησιμοποιήθηκαν σταθερές βάσεις με διαφορετική γωνία κλίσης χειμώνα και καλοκαίρι.

Πίνακας 6-5 Τα δεδομένα της μελέτης για τη μελέτη για σταθερές βάσεις μεταβλητής κλίσης χειμώνα –καλοκαίρι (500kW)

	-	KA	\OKAIPI		
syst V7.3.2		Variant: New	simulation variant		
0, Simulation date: 03/23 01:36 n v7.3.2					
		Projec	ct summary —		
Geographical Site		Situation		Project settings	
PALIOPLATANOS		Latitude	38.57 °N	Albedo	0.20
Greece		Longitude	21.63 °E		
		Altitude	100 m		
		Time zone	UTC+3		
PALIOPLATANOS Meteonorm 8.1 (2005-2013), Sat=100% - :	Synthetic			
PALIOPLATANOS Meteonorm 8.1 (2005-2013), Sat=100% - :	Synthetic System	n summary —		
PALIOPLATANOS Meteonorm 8.1 (2005-2013 Grid-Connected System	s), Sat=100% - s	Synthetic System Sheds system,	m summary — seasonal tilt		_
PALIOPLATANOS Meteonorm 8.1 (2005-2013 Grid-Connected System PV Field Orientation	8), Sat=100% - 3	Synthetic System Sheds system, Near Shadings	m summary — seasonal tilt	User's needs	
PALIOPLATANOS Meteonorm 8.1 (2005-2013 Grid-Connected System PV Field Orientation Seasonal tilt adjustment	8), Sat=100% - :	Synthetic System Sheds system, Near Shadings No Shadings	m summary — seasonal tilt	User's needs Unlimited load (grid)	
PALIOPLATANOS Meteonorm 8.1 (2005-2013 Grid-Connected System PV Field Orientation Seasonal tilt adjustment azimuth	8), Sat=100%	Synthetic System Sheds system, Near Shadings No Shadings	m summary — seasonal tilt	User's needs Unlimited load (grid)	L
PALIOPLATANOS Meteonorm 8.1 (2005-2013 Grid-Connected System PV Field Orientation Seasonal tilt adjustment azimuth Summer Tilt	8), Sat=100% - : m 0 ° 20 °	Synthetic System Sheds system, Near Shadings No Shadings	m summary — seasonal tilt	User's needs Unlimited load (grid)	
PALIOPLATANOS Meteonorm 8.1 (2005-2013 Grid-Connected System PV Field Orientation Seasonal tilt adjustment azimuth Summer Tilt winter	8), Sat=100% - : m 0 ° 20 ° 50 °	Synthetic System Sheds system, Near Shadings No Shadings	m summary — seasonal tilt	User's needs Unlimited load (grid)	L
PALIOPLATANOS Meteonorm 8.1 (2005-2013 Grid-Connected System PV Field Orientation Seasonal tilt adjustment azimuth Summer Tilt winter OctNovDecJanFebN	8), Sat=100% - : m 0 ° 20 ° 50 ° Aar	Synthetic System Sheds system, Near Shadings No Shadings	m summary — seasonal tilt	User's needs Unlimited load (grid)	L
PALIOPLATANOS Meteonorm 8.1 (2005-2013 Grid-Connected System PV Field Orientation Seasonal tilt adjustment azimuth Summer Tilt winter OctNovDecJanFebN System information	8), Sat=100% - : 0 ° 20 ° 50 ° Mar	Synthetic System, Sheds system, Near Shadings No Shadings	m summary — seasonal tilt	User's needs Unlimited load (grid)	L
PALIOPLATANOS Meteonorm 8.1 (2005-2013 Grid-Connected System PV Field Orientation Seasonal tilt adjustment azimuth Summer Tilt winter OctNovDecJanFebN System information PV Array	8), Sat=100% - : m 0 ° 20 ° 50 ° Mar	Synthetic Sheds system, Near Shadings No Shadings	m summary — seasonal tilt	User's needs Unlimited load (grid)	L
PALIOPLATANOS Meteonorm 8.1 (2005-2013 Grid-Connected System PV Field Orientation Seasonal tilt adjustment azimuth Summer Tilt winter OctNovDecJanFebN System information PV Array Nb. of modules	8), Sat=100% - : m 0 ° 20 ° 50 ° flar	Synthetic System Sheds system, Near Shadings No Shadings	m summary — seasonal tilt Inverters Nb. of units	User's needs Unlimited load (grid)	4 units
PALIOPLATANOS Meteonorm 8.1 (2005-2013 Grid-Connected System PV Field Orientation Seasonal tilt adjustment azimuth Summer Tilt winter OctNovDecJanFebN System information PV Array Nb. of modules Pnom total	m 0 ° 20 ° 50 ° Aar	Synthetic System Sheds system, Near Shadings No Shadings	m summary — seasonal tilt Inverters Nb. of units Pnom total	User's needs Unlimited load (grid) 4 500	units kWac

Πίνακας 6-6 Ορισμός της γωνίας κλίσης για σταθερές βάσεις μεταβλητής κλίσης χειμώνα -καλοκαίρι (500kW)

Πίνακας 6-7 Παραγόμενη ηλεκτρική ενέργεια ετησίως για σταθερές βάσεις μεταβλητής κλίσης χειμώνα –καλοκαίρι (500kW)

PR Performance Ratio

[57]

Ambient Temperature

Global Incident In coll, plane

Effective Global, corr. for IAM and shadings

T_Amb Globinc

GlobEff

Διάγραμμα 6.4 Διάγραμμα απωλειών ισχύος για σταθερές βάσεις μεταβλητής κλίσης χειμώνα - καλοκαίρι(500kW)

Διάγραμμα 6.5 Εγχεόμενη ενέργεια σε συνάρτηση με την άμεση ακτινοβολία στο πάνελ για σταθερές βάσεις μεταβλητής κλίσης χειμώνα -καλοκαίρι(500kW)

Διάγραμμα 6.6 Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για σταθερές βάσεις μεταβλητής κλίσης χειμώνα -καλοκαίρι(500kW)

6.3.3 Σενάριο 3: Κινητές βάσεις (ιχνηλάτες)

Πίνακας 6-8	Τα δεδομένα της μ	ελέτης για κινη	τές βάσεις (500kW)
	Project: KINF	ΙΤΕΣ ΒΑΣΕΙΣ	
	Variant: New si	mulation variant	
PVsyst V7.3.2 VC0, Simulation date: 29/03/23 01:40 with v7.3.2	Project s	summary —	
Geographical Site	Situation	,	Project settings
PALIOPLATANOS	Latitude	38.57 °N	Albedo 0.20
Greece	Longitude	21.63 °E	
	Altitude	100 m	
	Time zone	UTC+3	
PALIOPLATANOS Meteonorm 8.1 (2005-2013), Sat=100%	- Synthetic		
	System s	summary —	
Grid-Connected System	Unlimited tracker	s	
PV Field Orientation			Near Shadings
Orientation	Tracking algorithm		No Shadings
Tracking horizontal axis	Astronomic calculation	n	
Axis azimuth -180 °			
System information			
PV Array		Inverters	
Nb. of modules	1152 units	Nb. of units	4 units
Pnom total	518 kWp	Pnom total	500 kWac
		Phom ratio	1.037
User's needs			
Unlimited load (grid)			

Πίνακας 6-9 Ορισμός της γωνίας κλίσης για κινητές βάσεις(500kW)

	General parameters	
Grid-Connected System	Unlimited trackers	
PV Field Orientation		
Orientation	Tracking algorithm	Trackers configuration
Tracking horizontal axis	Astronomic calculation	Nb. of trackers 10 units
Axis azimuth -180 °		Unlimited trackers
		Sizes
		Tracker Spacing 6.60 m
		Collector width 3.00 m
		Ground Cov. Ratio (GCR) 45.5 %
		Left inactive band 0.02 m
		Right inactive band 0.02 m
		Phi min / max/+ 60.0 °
		Shading limit angles
		Phi limits for BT -/+ 62.4 °
Models used		
Transposition Perez		
Diffuse Perez, Meteonorm		
Circumsolar separate		
Horizon	Near Shadings	User's needs
Free Horizon	No Shadings	Unlimited load (arid)
		(3.14)

Πίνακας 6-10 Παραγόμενη ηλεκτρική ενέργεια ετησίως για κινητές βάσεις(500kW)

Διάγραμμα 6.7 Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για κινητές βάσεις(500kW)

Διάγραμμα 6.8 Εγχεόμενη ενέργεια σε συνάρτηση με την άμεση ακτινοβολία το πάνελ για κινητές βάσεις(500kW)

Διάγραμμα 6.9 Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για κινητές βάσεις(500kW)

6.3.4 Σενάριο 4: Ιχνηλάτες στον οριζόντιο άξονα κίνησης

Πίνακας 6-11 Τα δεδομένα της μελέτης για κινητές βάσεις οριζόντιου άξονα

Projec	t: ΚΙΝΗΤΕΣ ΒΑΣΕΙ ΔΙΕΥΘΥΝΣΗ	Σ OPIZONTIOY / BOPPA - NOTO)	ΑΞΟΝΑ ΣΤΗ (
PVsyst V7.3.2 VC0, Simulation date: 29/03/23 01:43 with v7.3.2	Variant: New	simulation variant	
	Projec	t summary —	
Geographical Site PALIOPLATANOS Greece	Situation Latitude Longitude Altitude Time zone	38.57 °N 21.63 °E 100 m UTC+3	Project settings Albedo 0.20
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), Sat=100%	- Synthetic Svster	n summary —	
Grid-Connected System PV Field Orientation Orientation Tracking plane, horizontal N-S axis Axis azimuth -180 °	No 3D scene de Tracking algorith Astronomic calcul	efined, no shadings m ation	Near Shadings No Shadings
System information PV Array Nb. of modules Pnom total	1152 units 518 kWp	Inverters Nb. of units Pnom total Pnom ratio	4 units 500 kWac 1.037
User's needs Unlimited load (grid)			

Πίνακας 6-12 Ορισμός της γωνίας κλίσης για κινητές βάσεις οριζόντιου άξονα(500kW)

PVC	General parameters	
Grid-Connected System	No 3D scene defined, no shadi	ings
PV Field Orientation		
Orientation	Tracking algorithm	Trackers configuration
Tracking plane, horizontal N-S axis	Astronomic calculation	No 3D scene defined
Axis azimuth -180 °		
Models used		
Transposition Perez		
Diffuse Perez, Meteonorm		
Circumsolar separate		
Horizon	Near Shadings	User's needs
Free Horizon	No Shadings	Unlimited load (grid)

Πίνακας 6-13 Παραγόμενη ηλεκτρική ενέργεια ετησίως για κινητές βάσεις οριζόντιου άξονα(500kW)

Διάγραμμα 6.10

Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για κινητές βάσεις οριζόντιου άξονα(500kW)

Διάγραμμα 6.11 Εγχεόμενη ενέργεια σε συνάρτηση με την άμεση ακτινοβολία το πάνελ για κινητές βάσεις οριζόντιου άξονα (500kW)

Διάγραμμα 6.12 Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για κινητές βάσεις οριζόντιου άξονα(500kW)

6.3.5 Σενάριο 5:Ιχνηλάτες με κάθετο άξονα κίνησης

Πίνακας 6-14 Τα δεδομένα της μελέτης για κινητές βάσεις κάθετου άξονα(500kW)

	Project	: ΚΙΝΗΤΕΣ ΒΑ	ΣΕΙΣ ΚΑΘΕΤΟΥ Α	EONA
		Variant: New	v simulation variant	
PVsyst V7.3.2 /C0, Simulation date: 9/03/23 01:56 vith v7.3.2				
		Proje	ct summary —	
Geographical Site PALIOPLATANOS Greece		Situation Latitude Longitude Altitude Time zone	38.57 °N 21.63 °E 100 m UTC+3	Project settings Albedo 0.20
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), s	Sat=100% - Syntl	netic Svoto	m summany	
		- Syste	m summary —	
Grid-Connected System PV Field Orientation Orientation Tracking plane, tilted axis Axis Tilt Azimuth	30° 0°	No 3D scene d Tracking algoriti Astronomic calcu	lefined, no shadings hm lation	Near Shadings No Shadings
System information PV Array Nb. of modules Pnom total		1152 units 518 kWp	Inverters Nb. of units Pnom total Pnom ratio	4 units 500 kWac 1.037
User's needs Unlimited load (grid)				

Πίνακας 6-15 Ορισμός της γωνίας κλίσης για κινητές βάσεις κάθετου άξονα(500kW)

		General parameters	
Grid-Connected	System	No 3D scene defined, no shad	ings
PV Field Orienta	ation		
Orientation		Tracking algorithm	Trackers configuration
Tracking plane, tilted axis		Astronomic calculation	No 3D scene defined
Axis Tilt	30 °		
Azimuth	0 °		
Models used			
Transposition	Perez		
Diffuse Pere	z, Meteonorm		
Circumsolar	separate		
Horizon		Near Shadings	User's needs
Free Horizon		No Shadings	Unlimited load (grid)

Πίνακας 6-16 Παραγόμενη ηλεκτρική ενέργεια ετησίως για κινητές βάσεις κάθετου άξονα(500kW)

Διάγραμμα 6.13 Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για κινητές βάσεις κάθετου άξονα(500kW)

Διάγραμμα 6.14 Εγχεόμενη ενέργεια σε συνάρτηση με την άμεση ακτινοβολία το πάνελ για κινητές βάσεις κάθετου άξονα(500kW)

Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για κινητές βάσεις κάθετου άξονα(500kW)

6.4 Σύγκριση και σχολιασμός αποτελεσμάτων

ΣΥΣΤΗΜΑ	ΒΑΘΜΟΣ ΑΠΟΔΟΣΗΣ	kWh/kW/year	Kwhr/year
Σταθερές βάσεις	87.1	1642	851066
Σταθερές βάσεις με αλλαγή κλίσης	87.09	1705	883796
Κινητές βάσεις	80.4	1826	946357
Κινητές βάσεις με οριζόντιο άξονα στη διεύθυνση βορρά – νότου	87.54	1988	1030375
Κινητές βάσεις με κατακόρυφο άξονα	87.39	2017	1045853

Παρατηρούμε ότι η παραγόμενη ηλεκτρική ενέργεια αυξάνεται κάθε φορά που πραγματοποιείται μια αλλαγή/ βελτίωση στον σχεδιασμό. Αρχικά για σταθερές βάσεις, μια αλλαγή της κλίσης (20° το καλοκαίρι που οι ηλιακές ακτίνες προσπίπτουν κάθετα στο πάνελ και 50° που οι ηλιακές ακτίνες είναι πλάγιες) προκαλεί την κάθετη πρόσπτωση της ηλιακής ακτινοβολίας καθ' όλη τη διάρκεια του έτους με αποτέλεσμα την αποδοτικότερη μετατροπή της ηλιακής ενέργειας σε ηλεκτρική ενέργεια. Στη συνέχεια χρησιμοποιώντας κινητές βάσεις ιχνηλάτησης της ηλιακής ακτινοβολίας παρατηρούμε μια περαιτέρω άνοδο της παραγόμενης ηλεκτρικής ενέργειας.

6.5 Οι παράμετροι της εγκατάστασης ισχύος 1ΜW

Ορίστηκαν οι παράμετροι της μελέτης, δηλαδή οι συντεταγμένες, η ισχύς, τα πάνελ και οι αντιστροφείς. Τα χαρακτηριστικά των πάνελ και των αντιστροφέων καθώς και η ισχύς του ΦΒ πάρκου φαίνονται στον Πίνακας 6-1

Στο Σχήμα 6.1 φαίνεται η διασύνδεση των αντιστροφέων με τα πάνελ και το δίκτυο

6.6 Παρουσίαση των 5 διαφορετικών σεναρίων για την εγκατάσταση του 1MW

Για τις ίδιες παραμέτρους «έτρεξαν» πέντε διαφορετικές εκδοχές όσον αφορά τη μέθοδο υποστύλωσης των πάνελ. Στη συνέχεια παρουσιάζονται τα αποτελέσματα από τα πέντε αυτά διαφορετικά σενάρια

6.6.1 Σενάριο 1: Σταθερές βάσεις με γωνία κλίσης 30°

Σε αυτή την μελέτη χρησιμοποιήθηκαν σταθερές βάσεις με γωνία κλίσης 30° σταθερή καθ' όλη τη διάρκεια του έτους.

Ο παρακάτω πίνακας δίνει τα γεωγραφικά χαρακτηριστικά της περιοχής και τα ηλεκτρικά χαρακτηριστικά του ΦΒ πάρκου.

	Project: ΣΤΑ	ΘΕΡΕΣ ΒΑΣΕΙΣ		
	rioject. 21A			
110	Variant: New	simulation variant		
Vsyst V7.3.2 C0, Simulation date: 9/03/23 01:33 tth v7.3.2				
	Project	t summary —		
Geographical Site	Situation		Project settings	
PALIOPLATANOS	Latitude	38.57 "N	Albedo	0.20
Greece	Longitude	21.63 °E		
	Altitude	100 m		
	Time zone	UTC+3		
Meteo data				
PALIOPLATANOS				
Meteonorm 8.1 (2005-2013), Sat=100	% - Synthetic			
	Sustan			
		r summary		
Grid-Connected System	No 3D scene de	fined, no shadings		
Grid-Connected System PV Field Orientation	No 3D scene de Near Shadings	fined, no shadings	User's needs	
Grid-Connected System PV Field Orientation Fixed plane	No 3D scene de Near Shadings No Shadings	fined, no shadings	User's needs Unlimited load (grid)	
Grid-Connected System PV Field Orientation Fixed plane Tilt/Azimuth 30 / 0 *	No 3D scene de Near Shadings No Shadings	fined, no shadings	User's needs Unlimited load (grid)	
Grid-Connected System PV Field Orientation Fixed plane Titl/Azimuth 30 / 0 * System information	No 3D scene de Near Shadings No Shadings	fined, no shadings	User's needs Unlimited load (grid)	
Grid-Connected System PV Field Orientation Fixed plane Titl/Azimuth 30 / 0 * System information PV Array	No 3D scene de Near Shadings No Shadings	fined, no shadings	User's needs Unlimited load (grid)	
Grid-Connected System PV Field Orientation Fixed plane Titl/Azimuth 30 / 0 * System information PV Array Nb. of modules	No 3D scene de Near Shadings No Shadings 2272 units	fined, no shadings Inverters Nb. of units	User's needs Unlimited load (grid)	2 units
Grid-Connected System PV Field Orientation Fixed plane Titl/Azimuth 30 / 0 * System information PV Array Nb. of modules Pnom total	No 3D scene de Near Shadings No Shadings 2272 units 1000 kWp	fined, no shadings Inverters Nb. of units Pnom total	User's needs Unlimited load (grid)	2 units 1000 kWac

Στον Πίνακας 6-19 φαίνεται ο ορισμός της γωνίας κλίσης των πάνελ (30°)

Πίνακας 6-19 Ορισμός της γωνίας κλίσης για σταθερές βάσεις

Grid-Connected	System	No 3D scene defined, no shad	ings
PV Field Orienta	tion		
Orientation		Sheds configuration	Models used
Fixed plane		No 3D scene defined	Transposition Perez
Tilt/Azimuth	30/0°		Diffuse Perez, Meteonorm
			Circumsolar separate
Horizon		Near Shadings	User's needs
Free Horizon		No Shadings	Unlimited load (grid)

Ο Πίνακας 6-20 δίνει την ετησίως παραγόμενη ηλεκτρική ενέργεια, το βαθμό απόδοσης του συστήματος και λεπτομερή ανά μήνα καταγραφή της παραγόμενης ηλεκτρικής ενέργειας από τα διάφορα είδη ακτινοβολιών (βλέπε 4. ΑΠΩΛΕΙΕΣ ΣΤΑ ΦΩΤΟΒΟΛΤΑΪΚΑ ΠΑΝΕΛ) και της εγχεόμενης ηλεκτρικής ενέργειας στο δίκτυο.

Normalized pro	oductions	1598	MWh/year	Specifi Perfor	ic production mance Ratio PF		1508 1	
Normalized pro	oductions					2	84.96 9	KWh/KWp/yea %
Lc: Collection L Ls: System Lo: 7 Yf: Produced u		(per installe	d kWp)		P	erformance l	Ratio PR	
a - Lc: Colection I Ls: System Lo: Yf: Produced u			1 1 1	1.2		B-6- 00-19-		
8 - Yf: Produced u	ss (inverter,)	0.67 (0.11	kWh/kWp/day	1 1	Pic Perfor	manoe Halto (117-11)	0.850	
diarray di	refuterency (m	Juli Aug Seg		0.9 0.08 0.07 0.07 0.06 0.04 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Jan Feb Mar	Apr May Jun	Juli Aug. Seo	Oct Nov D
			Balances	and main res	sults			I
G	lobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grld	PR
ĸ	Wh/m ²	kWh/m²	•c	kWh/m²	kWh/m²	MWh	MWh	ratio
January	65.5	30.67	7.42	102.0	100.2	95.3	92.8	0.910
ebruary	80.0	34.04	8.66	110.5	108.5	101.1	98.5	0.892
March	125.7	60.87	12.10	151.6	148.9	137.3	134.1	0.883
		70.57		407 3				
Inq	155.5	72.57	15.28	167.3	163.6	140.1	144.5	0.864
April Nay	155.5 200.8 221.8	72.57 81.13 73.07	15.28 20.65 24.95	167.3 197.2 208.9	163.6 192.3 203.6	140.1	144.5 165.6 170.8	0.864
April May June	155.5 200.8 221.8 223.9	72.57 81.13 73.07 72.06	15.28 20.65 24.96 27.76	167.3 197.2 208.9 214.8	163.6 192.3 203.6 209.5	140.1 169.5 175.0 177.7	144.5 165.6 170.8 173.4	0.864 0.840 0.818 0.808
prii tay une uly	155.5 200.8 221.8 223.9 203.9	72.57 81.13 73.07 72.06 69.76	15.28 20.65 24.96 27.76 27.54	167.3 197.2 208.9 214.8 214.0	163.6 192.3 203.6 209.5 209.4	140.1 169.5 175.0 177.7 177.8	144.5 165.6 170.8 173.4 173.7	0.864 0.840 0.818 0.808 0.812
pril tay une uly uguat september	155.5 200.8 221.8 223.9 203.9 148.3	72.57 81.13 73.07 72.06 69.76 51.23	15.28 20.65 24.96 27.76 27.54 22.35	167.3 197.2 208.9 214.8 214.0 174.0	163.6 192.3 203.6 209.5 209.4 170.6	140.1 169.5 175.0 177.7 177.8 148.0	144.5 165.6 170.8 173.4 173.7 144.5	0.864 0.840 0.818 0.808 0.812 0.831
April May June Lugust September October	155.5 200.8 221.8 223.9 203.9 148.3 107.9	72.57 81.13 73.07 72.06 69.76 51.23 42.49	15.28 20.65 24.96 27.76 27.54 22.35 17.93	167.3 197.2 208.9 214.8 214.0 174.0 145.2	163.6 192.3 203.6 209.5 209.4 170.6 142.7	140.1 169.5 175.0 177.7 177.8 148.0 127.9	144.5 165.6 170.8 173.4 173.7 144.5 124.8	0.864 0.840 0.818 0.808 0.812 0.831 0.831
April May June Lugust September October Hovember	155.5 200.8 221.8 223.9 203.9 148.3 107.9 69.7	72.57 81.13 73.07 72.06 69.76 51.23 42.49 31.13	15.28 20.65 24.96 27.76 27.54 22.35 17.93 13.00	167.3 197.2 208.9 214.8 214.0 174.0 145.2 104.4	163.6 192.3 203.6 209.5 209.4 170.6 142.7 102.6	146.1 169.5 175.0 177.7 177.8 148.0 127.9 94.6	144.5 165.6 170.8 173.4 173.7 144.5 124.8 92.2	0.864 0.840 0.818 0.808 0.812 0.831 0.860 0.883
April May June August September October Hovember December	155.5 200.8 221.8 223.9 203.9 148.3 107.9 69.7 55.7	72.57 81.13 73.07 72.06 69.76 51.23 42.49 31.13 27.34	15.28 20.65 24.96 27.76 27.54 22.35 17.93 13.00 8.67	167.3 197.2 208.9 214.8 214.0 174.0 145.2 104.4 91.3	163.6 192.3 203.6 209.5 209.4 170.6 142.7 102.6 89.5	146.1 169.5 175.0 177.7 177.8 148.0 127.9 94.6 85.1	144.5 165.6 170.8 173.4 173.7 144.5 124.8 92.2 82.9	0.864 0.840 0.818 0.808 0.812 0.831 0.860 0.883 0.908

Πίνακας 6-20 Παραγόμενη ηλεκτρική ενέργεια ετησίως για σταθερές βάσεις και κλίση 30º (1MW)

Ακολουθεί το διάγραμμα απωλειών ισχύος:

Διάγραμμα 6.16 Διάγραμμα απωλειών ισχύος με σταθερές βάσεις και κλίση 30º (1MW)

Τέλος, παρατίθενται και δύο διαγράμματα (Διάγραμμα 6.2και Διάγραμμα 6.3) όπου φαίνεται η παραγόμενη ηλεκτρική ενέργεια σε σχέση με την ακτινοβολία και την ισχύ των πάνελ σε ετήσια βάση.

Daily Input/Output diagram

Διάγραμμα 6.17 Εγχεόμενη ενέργεια σε συνάρτηση με την άμεση ακτινοβολία το πάνελ για σταθερές βάσεις και κλίση 30° (1MW)

Διάγραμμα 6.18 Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για σταθερές βάσεις και κλίση 30°(1MW)

6.6.2 Σενάριο 2: Σταθερές βάσεις με αλλαγή γωνίας κλίσης χειμώνα – καλοκαίρι

Σε αυτή την μελέτη χρησιμοποιήθηκαν σταθερές βάσεις με διαφορετική γωνία κλίσης χειμώνα και καλοκαίρι

Πίνακας 6-21 Τα δεδομένα της μελέτης για τη μελέτη για σταθερές βάσεις μεταβλητής κλίσης χειμώνα -καλοκαίρι(1MW)

	Project: Σ	ΓΑΘΕΡΕΣ ΒΑΣΕΙΣ ΚΑΛΟΚ	МЕ АЛЛАГН У (АІРІ	KEIMΩNA -	
PVsyst V7.3.2 VC0, Simulation date: 29/03/23 01:38 with v7.3.2		Variant: New sim	ulation variant		
		Project su	immary —		
Geographical Site PALIOPLATANOS Greece		Situation Latitude Longitude Altitude Time zone	38.57 *N 21.63 *E 100 m UTC+3	Project settings Albedo	0.20
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013).	Sat=100% - Syn	thetic System su	ımmary —		
Grid-Connected System		Sheds system, sea	sonal tilt		
PV Field Orientation Seasonal tilt adjustment azimuth Summer Tilt winter Oct -Nov -Dec -Jan -Feb -Ma	0. 20. 50.	Near Shadings No Shadings		User's needs Unlimited load (grid)	
System information					
PV Array			Inverters		
Nb. of modules		2272 units	Nb. of units		2 units
Pnom total		1000 kWp	Pnom total Pnom ratio		1000 kWac 1.000

Πίνακας 6-22 Ορισμός της γωνίας κλίσης για σταθερές βάσεις μεταβλητής κλίσης χειμώνα - καλοκαίρι(1MW)

		General parameters		
Grid-Connected Sy	stem	Sheds system, seasonal tilt		
PV Field Orientatio	n			
Orientation		Sheds configuration	Models used	
Seasonal tilt adjustme	nt	No 3D scene defined	Transposition Perez	
azimuth	0 °		Diffuse Perez, Meteonorm	
Summer Tilt	20 °		Circumsolar separate	
winter	50 °			
OctNovDecJanF	ebMar			
Horizon		Near Shadings	User's needs	
Free Horizon		No Shadings	Unlimited load (grid)	

Διάγραμμα 6.19 Διάγραμμα απωλειών ισχύος για σταθερές βάσεις μεταβλητής κλίσης χειμώνα - καλοκαίρι(1MW)

Διάγραμμα 6.20 Εγχεόμενη ενέργεια σε συνάρτηση με την άμεση ακτινοβολία στο πάνελ για σταθερές βάσεις μεταβλητής κλίσης χειμώνα -καλοκαίρι(1MW)

System Output Power Distribution

Διάγραμμα 6.21 Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για σταθερές βάσεις μεταβλητής κλίσης χειμώνα -καλοκαίρι(1MW)

6.6.3 Σενάριο 3: Κινητές βάσεις (ιχνηλάτες)

	Project: I	ΚΙΝΗΤΕΣ ΒΑΣΕΙΣ				
	Variant: N	Variant: New simulation variant				
syst V7.3.2 0, Simulation date: 03/23 01:40						
v7.3.2						
	Pro Pro	ject summary —				
Geographical Site	Situation		Project settings			
PALIOPLATANOS	Latitude	38.57 *N	Albedo	0.20		
Greece	Longitude	21.63 *E				
	Altitude	100 m				
	Time 2016	010+3				
Meteo data	Time zone	010+3				
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), Sat=10	0% - Synthetic	01043				
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), Sat=10(0% - Synthetic	tem summary —				
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), Sat=100 Grid-Connected System	0% - Synthetic Sys Unlimited tra	tem summary —				
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), Sat=10 Grid-Connected System PV Field Orientation	0% - Synthetic Sys Unlimited tra	tem summary —	Near Shadings			
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), Sat=10 Grid-Connected System PV Field Orientation Orientation	0% - Synthetic Sys Unlimited tra Tracking algo	tem summary — ackers	Near Shadings			
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), Sat=10 Grid-Connected System PV Field Orientation Orientation Tracking horizontal axis	0% - Synthetic Unlimited tra Tracking algo Astronomic ca	tem summary — ackers	Near Shadings No Shadings			
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), Sat=100 Grid-Connected System PV Field Orientation Orientation Tracking horizontal axis Axis azimuth -180 *	0% - Synthetic Sys Unlimited tra Tracking algo Astronomic cal	tem summary — ackers rithm Iculation	Near Shadings No Shadings			
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), Sat=100 Grid-Connected System PV Field Orientation Orientation Tracking horizontal axis Axis azimuth -180 * System information	0% - Synthetic Sys Unlimited tra Tracking algo Astronomic cal	tem summary — ackers rithm Iculation	Near Shadings No Shadings			
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), Sat=100 Grid-Connected System PV Field Orientation Orientation Tracking horizontal axis Axis azimuth -180 * System information PV Array	0% - Synthetic O% - Synthetic Unlimited tra Tracking algo Astronomic cal	tem summary — ackers rithm Iculation	Near Shadings No Shadings			
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), Sat=100 Grid-Connected System PV Field Orientation Orientation Tracking horizontal axis Axis azimuth -180 * System information PV Array Nb. of modules Deven inter	0% - Synthetic Sys Unlimited tra Tracking algo Astronomic cal 2272 units	tem summary — ackers rithm Iculation	Near Shadings No Shadings 2 ur	nits		
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), Sat=100 Grid-Connected System PV Field Orientation Orientation Tracking horizontal axis Axis azimuth -180 * System information PV Array Nb. of modules Pnom total	0% - Synthetic Sys Unlimited tra Tracking algo Astronomic cal 2272 units 1000 kWp	item summary — ackers irithm Iculation Inverters Nb. of units Pnom total Pnom total	Near Shadings No Shadings 2 ur 1000 ki	nits Wac		
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), Sat=100 Grid-Connected System PV Field Orientation Orientation Tracking horizontal axis Axis azimuth -180 * System information PV Array Nb. of modules Pnom total	0% - Synthetic Sys Unlimited tra Tracking algo Astronomic cal 2272 units 1000 kWp	item summary — ackers rithm Iculation Inverters Nb. of units Phom total Phom ratio	Near Shadings No Shadings 2 ui 1000 ki 1.000	nits Wac		
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), Sat=100 Grid-Connected System PV Field Orientation Orientation Tracking horizontal axis Axis azimuth -180 * System information PV Array Nb. of modules Pnom total User's needs	0% - Synthetic Sys Unlimited tra Tracking algo Astronomic cal 2272 units 1000 kWp	item summary — ackers inthm lculation Inverters Nb. of units Phom total Phom ratio	Near Shadings No Shadings 2 ui 1000 ki 1.000	nits Wac		

Πίνακας 6-25 Ορισμός της γωνίας κλίσης για κινητές βάσεις(1MW)

	General parameters				
Grid-Connected System	Unlimited trackers	Unlimited trackers			
PV Field Orientation					
Orientation	Tracking algorithm	Trackers configuration			
Tracking horizontal axis	Astronomic calculation	Nb. of trackers 10 units			
Axis azimuth -180 °		Unlimited trackers			
		Sizes			
		Tracker Spacing 6.60 m			
		Collector width 3.00 m			
		Ground Cov. Ratio (GCR) 45.5 %			
		Left inactive band 0.02 m			
		Right inactive band 0.02 m			
		Phi min / max/+ 60.0 °			
		Shading limit angles			
Models used		Phi limits for BT -/+ 62.4 °			
Transposition Perez					
Diffuse Perez, Meteonorm					
Circumsolar separate					
Horizon	Near Shadings	User's needs			
Free Horizon	No Shadings	Unlimited load (grid)			

Πίνακας 6-26 Παραγόμενη ηλεκτρική ενέργεια ετησίως για κινητές βάσεις(1MW)

Διάγραμμα 6.22 Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για κινητές βάσεις(1MW)

Διάγραμμα 6.23 Εγχεόμενη ενέργεια σε συνάρτηση με την άμεση ακτινοβολία το πάνελ για κινητές βάσεις(1MW)

System Output Power Distribution

Διάγραμμα 6.24 Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για κινητές βάσεις(1MW)

6.6.4 Σενάριο 4: Ιχνηλάτες στον οριζόντιο άξονα κίνησης

Τα δεδομένα της μελέτης για κινητές βάσεις οριζόντιου άξονα(1MW)

Πίνακας 6-27

Project: KINHTES BASEIS OPIZONTIOY ABONA STH ΔΙΕΥΘΥΝΣΗ ΒΟΡΡΑ - ΝΟΤΟΥ Variant: New simulation variant PVsyst V7.3.2 VC0, Simulation date: 29/03/23 01:43 with v7.3.2 **Project summary** Geographical Site Situation Project settings 38.57 °N 0.20 PALIOPLATANOS Latitude Albedo Greece Longitude 21.63 °E Altitude 100 m Time zone UTC+3 Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), Sat=100% - Synthetic System summary Grid-Connected System No 3D scene defined, no shadings **PV Field Orientation Near Shadings** Orientation Tracking algorithm No Shadings Astronomic calculation Tracking plane, horizontal N-S axis Axis azimuth -180 * System information PV Array Inverters Nb. of modules 2272 units Nb. of units 2 units Pnom total 1000 kWp Pnom total 1000 kWac 1.000 Pnom ratio User's needs Unlimited load (grid)

Πίνακας 6-28 Ορισμός της γωνίας κλίσης για κινητές βάσεις οριζόντιου άξονα(1MW)

	General parameters		
Grid-Connected System	No 3D scene defined, no shadings		
PV Field Orientation			
Orientation	Tracking algorithm	Trackers configuration	
Tracking plane, horizontal N-S axis	Astronomic calculation	No 3D scene defined	
Axis azimuth -180 °			
Models used			
Transposition Perez			
Diffuse Perez, Meteonorm			
Circumsolar separate			
Horizon	Near Shadings	User's needs	
Free Horizon	No Shadings	Unlimited load (grid)	

[87]

System Production

May

June

July

August

October

September

November

December

Year

Πίνακας 6-29 Παραγόμενη ηλεκτρική ενέργεια ετησίως για κινητές βάσεις οριζόντιου άξονα(1MW)

1945 kWh/kWp/year

85.33 %

Main results

E_Grld PR EArray MWh MWh ratio 88.1 85.8 0.918 104.2 101.7 0.905 148.3 151.7 0.894 155.5 72.57 15.28 206.5 204.3 184.6 180.5 0.874 200.8 81.13 20.65 268.6 266.2 231.8 227.0 0.845 221.8 73.07 24.96 299.2 297.0 246.2 0.823 251.4 223.9 72.06 27.76 305.1 302.9 252.8 247.6 0.812 203.9 69.76 27.54 285.9 283.8 239.9 235.0 0.822 148.3 51.23 22.35 205.3 203.3 176.4 172.6 0.841 107.9 152.7 150.6 0.874 42.49 17.93 136.6 133.5 69.7 31.13 13.00 99.8 97.8 91.4 89.1 0.893 55.7 27.34 8.67 84.6 82.4 79.5 77.3 0.915 1658.8 646.36 17.25 2279.6 2254.1 1988.3 1944.5 0.853 I T

				II			
Global horiz	ontal Irradi	ation		EArray	Effective	energy at the o	utput of the arra
Horizontal d	liffuse Irrad	ation		E_Grid	Energy In	jected into grid	
Amblent Te	mperature			PR	Performa	nce Ratio	
Global Incld	ent in coll.	plane					
Effective GI	obal, corr. f	or IAM and sha	dings				
	Global horiz Horizontal d Amblent Te Global Incid Effective Gl	Giobal horizontal irradi Horizontal diffuse irradi Ambient Temperature Global incident in coli. Effective Global, corr. f	Global horizontal irradiation Horizontal diffuse irradiation Ambient Temperature Global incident in coll. plane Effective Global, corr. for IAM and shar	Global horizontal Irradiation Horizontal diffuse Irradiation Ambient Temperature Global Incident In coll. plane Effective Global, corr. for IAM and shadings	Global horizontal irradiation EArray Horizontal diffuse irradiation E_Grid Ambient Temperature PR Global incident in coll. plane Effective Global, corr. for IAM and shadings	Global horizontal irradiation EArray Effective Horizontal diffuse irradiation E_Grid Energy In Ambient Temperature PR Performa Global incident in coll. plane Effective Global, corr. for IAM and shadings	Global horizontal irradiation EArray Effective energy at the ou Horizontal diffuse irradiation E_Grid Energy injected into grid Ambient Temperature PR Performance Ratio Global incident in coll. plane Effective Global, corr. for IAM and shadings

[88]

Διάγραμμα 6.25 Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για κινητές βάσεις οριζόντιου άξονα(1MW)

Διάγραμμα 6.26 Εγχεόμενη ενέργεια σε συνάρτηση με την άμεση ακτινοβολία το πάνελ για κινητές βάσεις οριζόντιου άξονα(1MW)

System Output Power Distribution

Διάγραμμα 6.27 Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για κινητές βάσεις οριζόντιου άξονα(1MW)

6.6.5 Σενάριο 5: Ιχνηλάτες με κάθετο άξονα κίνησης

		Variant: New	simulation variant	
yst V7.3.2 , Simulation date: 3/23 01:56 v7.3.2				
		Projec	ct summary —	
Constantiant City		Cituation		Project actile on
seographical Site		Situation	38 57 *N	Albedo 0.20
TRACE		Longitude	21.63 *E	0.20
sieeve		Altitude	100 m	
		Alatooe	100 111	
Meteo data ALIOPLATANOS Meteonorm 8.1 (2005-2013), 5	Sat=100% - Syr	Time zone	UTC+3	
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), 5	Sat=100% - Syr	Time zone	m summary —	
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), s Grid-Connected System	Sat=100% - Syr	nthetic No 3D scene d	utc+3 m summary — efined, no shadings	
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), s Grid-Connected System	Sat=100% - Syr	nthetic No 3D scene d	utc+3 m summary — efined, no shadings	Near Shadings
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), s Grid-Connected System PV Field Orientation Drientation	Sat=100% - Syr	nthetic No 3D scene d Tracking algorith	m summary — efined, no shadings	Near Shadings No Shadings
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), s Grid-Connected System PV Field Orientation Drientation Tracking plane, tilted axis	Sat=100% - Syr	Time zone hthetic System No 3D scene di Tracking algorith Astronomic calcul	m summary — efined, no shadings	Near Shadings No Shadings
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), s Grid-Connected System PV Field Orientation Drientation Gracking plane, tilted axis Axis Tilt	Sat=100% - Syr	Time zone hthetic System No 3D scene di Tracking algorith Astronomic calcul	m summary — efined, no shadings	Near Shadings No Shadings
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), 9 Grid-Connected System PV Field Orientation Drientation Tracking plane, tilted axis Axis Tilt Azimuth	Sat=100% - Syr	Time zone nthetic System No 3D scene d Tracking algorith Astronomic calcul	m summary — efined, no shadings hm lation	Near Shadings No Shadings
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), S Grid-Connected System PV Field Orientation Drientation Tracking plane, tilted axis Axis Tilt Azimuth System information	Sat=100% - Syr	Time zone nthetic System No 3D scene d Tracking algorith Astronomic calcul	utc+3 m summary — efined, no shadings hm lation	Near Shadings No Shadings
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), 9 Grid-Connected System PV Field Orientation Drientation Tracking plane, tilted axis Axis Tilt Azimuth System information PV Array	Sat=100% - Syr	Time zone nthetic System No 3D scene d Tracking algorith Astronomic calcul	urc+3 m summary — efined, no shadings hm lation	Near Shadings No Shadings
Meteo data PALIOPLATANOS Meteonorm 8.1 (2005-2013), 9 Grid-Connected System PV Field Orientation Drientation Tracking plane, tilted axis Axis Tilt Azimuth System information PV Array Nb. of modules	Sat=100% - Syr	Time zone nthetic System No 3D scene d Tracking algorith Astronomic calcul 272 units	m summary — efined, no shadings hm lation Inverters Nb. of units	Near Shadings No Shadings 2 units

Πίνακας 6-30 Τα δεδομένα της μελέτης για κινητές βάσεις κάθετου άξονα(1MW)

Πίνακας 6-31 Ορισμός της γωνίας κλίσης για κινητές βάσεις κάθετου άξονα(1MW)

Grid-Connected Sy	rstem				
		No 3D scene defined, no shadings			
PV Field Orientatio	n				
Orientation		Tracking algorithm	Trackers configuration		
Tracking plane, tilted axis		Astronomic calculation	No 3D scene defined		
Axis Tilt	30 °				
Azimuth	0 °				
Models used					
Transposition	Perez				
Diffuse Perez, M	Meteonorm				
Circumsolar	separate				
Horizon		Near Shadings	User's needs		
Free Horizon		No Shadings	Unlimited load (grid)		

[91]

Πίνακας 6-32 Παραγόμενη ηλεκτρική ενέργεια ετησίως για κινητές βάσεις κάθετου άξονα(1MW)

Διάγραμμα 6.28 Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για κινητές βάσεις κάθετου άξονα(1MW)

Διάγραμμα 6.29 Εγχεόμενη ενέργεια σε συνάρτηση με την άμεση ακτινοβολία το πάνελ για κινητές βάσεις κάθετου άξονα(1MW)

Διάγραμμα 6.30 Εγχεόμενη ηλεκτρική ενέργεια σε συνάρτηση με την εγχεόμενη ισχύ για κινητές βάσεις κάθετου άξονα (1MW)

6.7 Σύγκριση και σχολιασμός αποτελεσμάτων

ΣΥΣΤΗΜΑ	ΒΑΘΜΟΣ ΑΠΟΔΟΣΗΣ	kWh/kW/year	Mwhr/year
Σταθερές βάσεις	84.96	1598	1598
Σταθερές βάσεις με αλλαγή κλίσης	85	1660	1660
Κινητές βάσεις	78.35	1786	1786
Κινητές βάσεις με οριζόντιο άξονα στη διεύθυνση βορρά – νότου	85.33	1945	1945
Κινητές βάσεις με κατακόρυφο άξονα	84.39	2089	2089

Παρατηρούμε ότι η παραγόμενη ηλεκτρική ενέργεια αυξάνεται κάθε φορά που πραγματοποιείται μια αλλαγή/ βελτίωση στον σχεδιασμό. Αρχικά για σταθερές βάσεις, μια αλλαγή της κλίσης (20° το καλοκαίρι που οι ηλιακές ακτίνες προσπίπτουν κάθετα στο πάνελ και 50° που οι ηλιακές ακτίνες είναι πλάγιες) προκαλεί την κάθετη πρόσπτωση της ηλιακής ακτινοβολίας καθ' όλη τη διάρκεια του έτους με αποτέλεσμα την αποδοτικότερη μετατροπή της ηλιακής ενέργειας σε ηλεκτρική ενέργεια. Στη συνέχεια χρησιμοποιώντας κινητές βάσεις ιχνηλάτησης της ηλιακής ακτινοβολίας παρατηρούμε μια περαιτέρω άνοδο της παραγόμενης ηλεκτρικής ενέργειας.

7. ΤΕΧΝΟΟΙΚΟΝΟΜΙΚΗ ΜΕΛΕΤΗ

7.1 Ετήσια έσοδα από τη διάθεση της ηλεκτρικής ενέργειας στο Ελληνικό Δίκτυο για την εγκατάσταση 500kW

Με τιμή πώλησης 0.0065/kWhr τα ετήσια έσοδα από κάθε ένα από τα πέντε διαφορετικά συστήματα φαίνεται παρακάτω:

ΣΥΣΤΗΜΑ	Kwhr/year	EΣΟΔΑ/year
Σταθερές βάσεις	851066	851066 ×0.065=55319.29€
Σταθερές βάσεις με αλλαγή κλίσης	883796	883796 ×0.065=57446.74€
Κινητές βάσεις	946357	946357 ×0.065=61513.205€
Κινητές βάσεις με οριζόντιο άξονα στη διεύθυνση βορρά – νότου	1030375	1030375 ×0.065=66974.375€
Κινητές βάσεις με κατακόρυφο άξονα	1045853	1045853 ×0.065=67980.445€

Πίνακας 7-1 Ετήσια έσοδα των εγκαταστάσεων

7.2 Κόστος αρχικής εγκατάστασης και ετήσιας συντήρησης

Το κόστος της αρχικής εγκατάστασης και για σταθερά πάνελ και για ιχνηλάτες προκύπτει από τον παρακάτω πίνακα. Προκύπτουν δύο διαφορετικά κόστη με αρκετή διαφορά μεταξύ τους. Οι βάσεις στήριξης με ιχνηλάτες αυξάνουν το κόστος κατά 30%, όπως φαίνεται στον Πίνακας 7-2. Διαφορές προκύπτουν και στα κόστη ετήσιας συντήρησης. Ως εκ τούτου πρέπει να διερευνηθεί αν τελικά είναι οικονομικά συμφέρουσα η επιλογή των ιχνηλατών.

ΦΒ πλαίσια	1152 × 315= 362880€
Αντιστροφείς	4 × 8000=32000€
Βάσεις στήριξης	72 ×1500=108000€
Βάσεις στήριξης με ιχνηλάτες	108000 ×1.3 = 140400€
Διαμόρφωση οικοπέδου	2000€
Περίφραξη οικοπέδου	3000€
Κατασκευή γείωσης	2500€
Αντικεραυνική προστασία	7000€
Σύστημα παρακολούθησης	5000€
Συνολικό κόστος σταθερών βάσεων	522380
Συνολικό κόστος με ιχνηλάτες	554780

Πίνακας 7-2	Κόστος	αρχικής	εγκατάστασης

Ασφάλιση εξοπλισμού – φύλαξη πάρκου	5000€ με σταθερές βάσεις
	7000€ με ιχνηλάτες
Ετήσια συντήρηση εξοπλισμού	2000€ με σταθερές βάσεις
	4000€ με ιχνηλάτες
Ασφαλιστικές εισφορές	3000€ με σταθερές βάσεις
	5000€ με ιχνηλάτες
Έξοδα ηλεκτρικής ενέργειας και τηλεπικοινωνιών	1000€
Συνολικό κόστος σταθερών βάσεων	11000€
Συνολικό κόστος με ιχνηλάτες	17000€

Πίνακας 7-3 Κόστος ετήσιας συντήρησης

7.3 Χρόνος απόσβεσης αρχικής επένδυσης

Παρακάτω υπολογίζεται ο χρόνος απόσβεσης για τις βάσεις με ιχνηλάτες με κατακόρυφο άξονα, δηλαδή για τα συστήματα με την μεγαλύτερη απόδοση ανά κατηγορία.

Σύμφωνα με τον Πίνακας 7-2 το κόστος της εγκατάστασης με ιχνηλάτες ανέρχεται στις 554780€. Από το ποσό αυτό, 154780€ προέρχεται από ίδια κεφάλαια (27,9%) και το υπόλοιπο ποσό, δηλαδή 400000€ (72.1%) θα καλυφθεί από τραπεζικό δάνειο.

Τα Δάνεια, είναι πιστωτικά προϊόντα στα οποία η αποπληρωμή γίνεται με τη καταβολή δόσεων. Το βασικό σημείο στην ανάλυση τέτοιων δανείων είναι ο σχεδιασμός του Πίνακα Εξόφλησης όπως φαίνεται στη συνέχεια (Πίνακας 7-4). Θεωρούμε ετήσια δόση 30769.23 € για 13 χρόνια, έτσι ώστε τα έσοδα του φωτοβολταϊκού πάρκου να μπορούν να καλύψουν τη δόση και τα λειτουργικά του έξοδα που είναι 17000€ ετησίως.

Ακολουθεί η επεξήγηση της βασικής τραπεζικής ορολογίας που χρησιμοποιείται στον Πίνακας 7-4 [7][8][9]

- Αρχικό Ποσό είναι το ποσό του δανείου (του αρχικού κεφαλαίου δανεισμού) που οφείλεται στο τέλος κάθε περιόδου (χωρίς αυτό να περιλαμβάνει τους αναλογούντες τόκους)
- Δόση, είναι το ύψος της καταβολής η οποία αποτελείται από Τόκους και Χρεολύσια
- Οι τόκοι υπολογίζονται επί του συνολικού κεφαλαίου που έχουν δεσμευθεί μμεταξύ δύο περιόδων καταβολής των δόσεων (επί του αρχικού ποσού).
- Χρεολύσιο, είναι το ποσό το οποίο αφορά στην τμηματική εξόφληση του κεφαλαίου.
- Υπόλοιπο Κεφαλαίου είναι το ποσό του δανείου το οποίο οφείλεται μετά την καταβολή της δόσης και προκύπτει από τη διαφορά μμεταξύ του αρχικού ποσού και της δόσης. Είναι προφανές ότι το υπόλοιπο κεφαλαίου στο τέλος κάθε χρονικής περιόδου ισούται με το αρχικό ποσό της επόμενης περιόδου.

7.3.1 Δάνεια Σταθερού Χρεολυσίου.

Στα δάνεια αυτής της κατηγορίας, η κατάρτιση του Πίνακα Εξόφλησης Δανείου, στο οποίο οι δόσεις καταβάλλονται στο τέλος κάθε έτους, ακολουθεί τα εξής βήματα: [7][8][9]

- Διαιρώ το αρχικό ποσό του Δανείου με τον αριθμό των ετών που απαιτούνται για την εξόφληση. Με τον τρόπο αυτό υπολογίζω το σταθερό ύψος του τοκοχρεωλυσίου (της δόσης).
- Υπολογίζω την ετήσια καταβολή τόκων ως το γινόμενο του αρχικού ποσού με το επιτόκιο εκτοκιστικής περιόδου.
- Υπολογίζω το ύψος του χρεολυσίου, δηλαδή τη διαφορά του αρχικού ποσού από τους τόκους.
- 4. Ακολουθώ τα ίδια βήματα για τα επόμενα έτη (Πίνακας 1).

Πίνακας 7-4 Πίνακας εξόφλησης δανείου

ΠορίοΣοιο	Αρχικό Ποσό	Δόση	Τόκοι	Χρεολύσιο	Υπόλοιπο κεφαλαίου
ι ιερισσος	А	Δ=	T = A x 0,04	X=A-T	E=A-Δ
1	400000	30769.23	16000	384000	369230.77
2	369230.77	30769.23	14769.2308	355200	338461.54
3	338461.54	30769.23	13538.4616	324923.0784	307692.31
4	307692.31	30769.23	12307.69	295384.62	276923.08
5	276923.08	30769.23	11076.9232	265846.1568	246153.85
6	246153.85	30769.23	9846.154	236307,696	215384,62
7	215384,62	30769.23	8615.3848	206769.2352	184615.09
8	184615.09	30769.23	7384.6036	177230.4864	153845.86
9	153845.86	30769.23	6153.8344	147692.0256	123076.63
10	123076.63	30769.23	4923.0652	118153.5648	92307.4
11	92307.4	30769.23	3692.296	88615.104	61538.17
12	61538.17	30769.23	2461.5268	59076.6432	30768.94
13	30768.94	30768.94	1230.7576	0	0

7.3.2 Αποσβέσεις

Τα πάγια περιουσιακά στοιχεία που χρησιμοποιούνται σε παραγωγική διαδικασία χάνουν προοδευτικά την αξία τους με τη χρήση και το χρόνο. Η βαθμιαία μείωση της αξίας ενός παγίου περιουσιακού στοιχείου μιας επιχείρησης είναι γνωστή ως απόσβεση ή υποτίμηση (depreciation).

Αιτίες μείωσης αξίας παγίων στοιχείων:[7][8][9]

- Λειτουργική φθορά: Η χρήση ενός ενσώματου στοιχείου, πχ. μιας μηχανής, οδηγεί αναπόφευκτα σε προοδευτική φθορά του. Ειδικά σε μηχανήματα παραγωγής, όπου η χρήση τους μπορεί να είναι σε 24ωρη βάση όλο το χρόνο, ο ρυθμός φθοράς μπορεί να είναι υψηλός.
- Χρονική φθορά: Η πάροδος του χρόνου, ανεξάρτητα χρήσης, μπορεί να δημιουργήσει από μόνη της φθορά σε ενσώματα στοιχεία, π.χ., φθορά λόγω πολυμερισμού των πλαστικών δομικών στοιχείων μιας μηχανής ή ενός μεταφορικού μέσου.
- Οικονομική απαξίωση: Οι τεχνολογικές εξελίξεις ενσωματώνονται στην αγορά με την κατασκευή νέων προηγμένων και πιο αποδοτικών μηχανημάτων που επιφέρουν την απαξίωση των παλιού εξοπλισμού. Επίσης, η εισαγωγή νέων πιο ελκυστικών προϊόντων από τον ανταγωνισμό συνεπάγεται μείωση των πωλήσεων των παλιών και κατά συνέπεια απαξίωση της παραγωγικής υποδομής που τα παράγουν. Ανεξάρτητα από τους λόγους, η μείωση της αξίας είναι πραγματική και ξεχωριστή για κάθε πάγιο (ακόμα και του ίδιου είδους), μπορεί δε να καθοριστεί αντικειμενικά από την εκάστοτε τιμή μεταπώλησης του παγίου στην αγορά.

Υπάρχουν διάφορες μέθοδοι υπολογισμού των αποσβέσεων. Στην παρούσα επένδυση ύψους 554780€ χρησιμοποιούμε τη σταθερή μέθοδο με συντελεστή απόσβεσης 5% για 13 έτη. Λαμβάνοντας υπόψη αυτό το δεδομένο οι αποσβέσεις προσδιορίζονται σε 27739 € ανά έτος.

7.3.3 Ετήσια έσοδα από την παραγωγή ηλεκτρικής ενέργειας

Στις κινητές βάσεις με κατακόρυφο άξονα η παραγόμενη ηλεκτρική ενέργεια τον πρώτο χρόνο της λειτουργίας της εγκατάστασης θα είναι 1045853kWh και με τιμή 0.065€/kWh τα έσοδα τον πρώτο χρόνο θα είναι 67980€. Κάθε χρόνο η απόδοση των πάνελ μειώνεται κατά 0.5%, οπότε προκύπτει ο παρακάτω πίνακας, ο οποίος έχει συμπληρωθεί για 25 έτη, όσος και ο χρόνος ζωής των εγκαταστάσεων αυτού του τύπου.

Έτος	Παραγώμενη Ηλεκτρική Ενέργεια (KWhr)	'Εσοδα (€)
1	1045853	67980.4
2	1040623.735	67640.5
3	1035420.616	67302.34
4	1030243.513	66965.8
5	1025092.296	66631
6	1019966.834	66297.8
7	1014867	65966.355
8	1009792.665	65636.5
9	1004743.702	65308.34
10	999719.9832	64981.8
11	994721.3833	64656.9
12	989747.7764	64333.6
13	984799	64012
14	979875	63691.875
15	974975.63	63373.42
16	970100.7518	63056.55
17	965250.2481	62741.266
18	960423.9968	62427.56
19	955621.8768	62115.42
20	950843.7675	61805
21	946089.5486	61495.82
22	941359.1	61188.34
23	936652.3054	60882.4
24	931969	60577.985
25	927309	60275

Λαμβάνοντας υπόψη όλα τα παραπάνω στοιχεία προέκυψε ο παρακάτω πίνακας:

Πίνακας 7-6 Οικονομικές απολαβές για την εγκατάσταση των 500kW

Έτος	Έσοδα	Λειτουργικά Έξοδα	Λειτουργικά Κέοδη	Απόσβεση	Λόση	Υπόλοιπο Δαγείου	Τόκος	Κέρδη προ φόρων	Φόρος	Καθαρές χοηματοροές	Αθροιστικές Καθαρές χοηματοροές
	A	В	C=A-B	D	E	F=	G	H=C-D-G	Нх0.22	I=A-E-H	ίδια κεφάλαια+καθαρές χοηματοροές
											-154780
1	67980	17000	50980	27739	30769	369231	16000	7241	1593,02	35617,98	-119162
2	67641	17170	50471	27739	30769	338462	14769	7963	1751,86	35120,14	-84042
3	67302	17342	49960	27739	30769	307692	13538	8683	1910,26	34622,74	-49419
4	66966	17515	49451	27739	30769	276923	12308	9404	2068,88	34128,12	-15291
5	66631	17690	48941	27739	30769	246154	11077	10125	2227,5	33634,5	18344
6	66298	17867	48431	27739	30769	215385	9846	10846	2386,12	33142,88	51486
7	65966	18046	47920	27739	30769	184615	8615	11566	2544,52	32652,48	84138
8	65637	18226	47411	27739	30769	153846	7385	12287	2703,14	32164,86	116303
9	65308	18409	46899	27739	30769	123077	6154	13006	2861,32	31677,68	147981
10	64982	18593	46389	27739	30769	92307	4923	13727	3019,94	31193,06	179174
11	64657	18779	45878	27739	30769	61538	3692	14447	3178,34	30709,66	209884
12	64334	18966	45368	27739	30769	30769	2462	15167	3336,74	30228,26	240112
13	64012	19156	44856	27739	30769		1231	15886	3494,92	29748,08	269860
14	63691	19348	44343	27739				16604	3652,88	60038,12	329898
15	63373	19541	43832	27739				16093	3540,46	59832,54	389731
16	63057	19736	43321	27739				15582	3428,04	59628,96	449360
17	62741	19934	42807	27739				15068	3314,96	59426,04	508786
18	62428	20133	42295	27739				14556	3202,32	59225,68	568012

19	62115	20334	41781	27739		14042	3089,24	59025,76	627038
20	61805	20538	41267	27739		13528	2976,16	58828,84	685867
21	61496	20743	40753	27739		13014	2863,08	58632,92	744500
22	61188	20950	40238	27739		12499	2749,78	58438,22	802938
23	60882	21160	39722	27739		11983	2636,26	58245,74	861184
24	60578	21372	39206	27739		11467	2522,74	58055,26	919239
25	60275	21586	38689	27739		10950	2409	57866	977105

Από τα στοιχεία του παραπάνω πίνακα προκύπτει ότι η επένδυση είναι κερδοφόρα από το 5° έτος, κάτι που φαίνεται και από το επόμενο γράφημα.

7.4 Ετήσια έσοδα από τη διάθεση της ηλεκτρικής ενέργειας στο Ελληνικό Δίκτυο για την εγκατάσταση του 1MW

Με τιμή πώλησης 0.0065/kWhr τα ετήσια έσοδα από κάθε ένα από τα πέντε διαφορετικά συστήματα φαίνεται παρακάτω

ΣΥΣΤΗΜΑ	Kwhr/year	EΣΟΔΑ/year
Σταθερές βάσεις	1598000	1598000 ×0.065=103870€
Σταθερές βάσεις με αλλαγή κλίσης	1660000	1660000 ×0.065=107900€
Κινητές βάσεις	1786000	1786000 ×0.065=116090€
Κινητές βάσεις με οριζόντιο άξονα στη διεύθυνση βορρά – νότου	1945000	1945000 ×0.065=126425€
Κινητές βάσεις με κατακόρυφο άξονα	2089000	2089000 ×0.065=135785€

Πίνακας 7-7	Ετήσια έσοδα των	ενκαταστάσεων(1MW)

7.5 Κόστος αρχικής εγκατάστασης και ετήσιας συντήρησης

Το κόστος της αρχικής εγκατάστασης και για σταθερά πάνελ και για ιχνηλάτες προκύπτει από τον παρακάτω πίνακα. Προκύπτουν δύο διαφορετικά κόστη με αρκετή διαφορά μεταξύ τους. Οι βάσεις στήριξης με ιχνηλάτες αυξάνουν το κόστος κατά 30%, όπως φαίνεται στον Πίνακας 7-2ακα 7.8. Διαφορές προκύπτουν και στα κόστη ετήσιας συντήρησης. Ως εκ τούτου πρέπει να διερευνηθεί αν τελικά είναι οικονομικά συμφέρουσα η επιλογή των ιχνηλατών.

ΦΒ πλαίσια	2272 × 315= 715680€
Αντιστροφείς	2 × 15000=30000€
Βάσεις στήριξης	142 ×1500= 213000

Πίνακας 7-8 Κόστος αρχικής εγκατάστασης

Βάσεις στήριξης με ιχνηλάτες	213000 ×1.3 = 276900€
Διαμόρφωση οικοπέδου	4000€
Περίφραξη οικοπέδου	6000€
Κατασκευή γείωσης	5000€
Αντικεραυνική προστασία	14000€
Σύστημα παρακολούθησης	10000€
Συνολικό κόστος σταθερών βάσεων	997680
Συνολικό κόστος με ιχνηλάτες	1061580

Πίνακας 7-9 Κόστος ετήσιας συντήρησης

Ασφάλιση εξοπλισμού – φύλαξη πάρκου	10000€ με σταθερές βάσεις		
	14000€ με ιχνηλάτες		
Ετήσια συντήρηση εξοπλισμού	4000€ με σταθερές βάσεις		
	8000€ με ιχνηλάτες		
Ασφαλιστικές εισφορές	3000€ με σταθερές βάσεις		
	5000€ με ιχνηλάτες		
Έξοδα ηλεκτρικής ενέργειας και τηλεπικοινωνιών	1000€		

Συνολικό κόστος σταθερών βάσεων	18000€
Συνολικό κόστος με ιχνηλάτες	28000€

7.6 Χρόνος απόσβεσης αρχικής επένδυσης

Παρακάτω υπολογίζεται ο χρόνος απόσβεσης για τις βάσεις με ιχνηλάτες με κατακόρυφο άξονα, δηλαδή για τα συστήματα με την μεγαλύτερη απόδοση ανά κατηγορία.

Σύμφωνα με τον Πίνακα 7-8 το κόστος της εγκατάστασης με ιχνηλάτες ανέρχεται στις 1061580€. Από το ποσό αυτό, 307860€ (29%)προέρχεται από ίδια κεφάλαια και το υπόλοιπο ποσό, δηλαδή 753720€ (71%) θα καλυφθεί από τραπεζικό δάνειο.

Θεωρούμε ετήσια δόση 53837 € για 13 χρόνια, έτσι ώστε τα έσοδα του φωτοβολταϊκού πάρκου να μπορούν να καλύψουν τη δόση και τα λειτουργικά του έξοδα που είναι 28000€ ετησίως.

Περίρδος	Αρχικό Ποσό Δόση		Τόκοι	Χρεολύσιο	Υπόλοιπο κεφαλαίου
Περίουος	A	Δ=	T = A x 0,04	X=A-T	E=A-Δ
1	753720	57978	30148,8	723571,2	695742
2	695742	57978	27829,68	667912,3	637764
3	637764	57978	25510,56	612253,4	579786
4	579786	57978	23191,44	556594,6	521808
5	521808	57978	20872,32	500935,7	463830
6	463830	57978	18553,2	445276,8	405852
7	405852	57978	16234,08	389617,9	347874
8	347874	57978	13914,96	333959	289896

Πίνακας 7-10 Πίνακας εξόφλησης δανείου

9	289896	57978	11595,84	278300,2	231918
10	231918	57978	9276,72	222641,3	173940
11	173940	57978	6957,6	166982,4	115962
12	115962	57978	4638,48	111323,5	57984
13	57984	57984	2319,36	55664,64	0

7.6.1 Αποσβέσεις

Στην παρούσα επένδυση ύψους **1061580**€ χρησιμοποιούμε τη σταθερή μέθοδο με συντελεστή απόσβεσης 5% για 13 έτη. Λαμβάνοντας υπόψη αυτό το δεδομένο οι αποσβέσεις προσδιορίζονται σε 53079 ανά έτος.

7.6.2 Ετήσια έσοδα από την παραγωγή ηλεκτρικής ενέργειας

Στις κινητές βάσεις με κατακόρυφο άξονα η παραγόμενη ηλεκτρική ενέργεια τον πρώτο χρόνο της λειτουργίας της εγκατάστασης θα είναι 2089000 kWh και με τιμή 0.065€/kWh τα έσοδα τον πρώτο χρόνο θα είναι 2089000 ×0.065=135785€. Κάθε χρόνο η απόδοση των πάνελ μειώνεται κατά 0.5%, οπότε προκύπτει ο παρακάτω πίνακας

Έτος	Παραγώμενη Ηλεκτρική Ενέργεια (KWhr)	'Εσοδα (€)
1	2089000	135785
2	2078555	135106,075
3	2.068.162	134430,53
4	2.057.821	133758,3919

5	2.047.532	133089,6
6	2.037.295	132424,1519
7	2.027.108	131762,0312
8	2.016.973	131103,221
9	2.006.887	130447,655
10	1.996.853	129795,445
11	1.986.869	129146,485
12	1.976.935	128500,775
13	1.967.050	127858,25
14	1.957.215	127218,975
15	1.947.429	126582,885
16	1.937.692	125949,98
17	1.928.003	125320,195
18	1.918.363	124693,595
19	1.908.771	124070,115
20	1.899.227	123449,755
21	1.889.731	122832,515

22	1.880.282	122218,33
23	1.870.881	121607,265
24	1.861.527	120999,255
25	1.852.219	120394,235

Λαμβάνοντας υπόψη όλα τα παραπάνω στοιχεία προέκυψε ο παρακάτω πίνακας:

Πίνακας 7-12 Οικονομικές απολαβές

Έτος	Έσοδα	Λειτουργικά Έξοδα	Λειτουργικά Κέρδη	Απόσβεση	Δόση	Υπόλοιπο Δανείου	Τόκος	Κέρδη προ φόρων	Φόρος	Καθαρές χρηματοροές	Αθροιστικές Καθαρές χρηματοροές
	Α	В	C=A-B	D	F	F	G	H=C-D-G	Hx0 22	І=А-F-Н	ίδια κεφάλαια+καθαρές
		-									-307860
1	135785	28000	107785	53079	57978	695742	30148,8	24557,2	5402,584	72404,416	-235455,584
2	135106,075	28280	106826,075	53079	57978	637764	27829,68	25917,395	5701,827	71426,2481	-164029,3359
3	134430,53	28562,8	105867,73	53079	57978	579786	25510,56	27278,17	6001,197	70451,3326	-93578,0033
4	133758,3919	28848,428	104909,9639	53079	57978	521808	23191,44	28639,52391	6300,695	69479,69665	-24098,30665
5	133089,6	29136,9123	103952,6877	53079	57978	463830	20872,32	30001,36768	6600,301	68511,29907	44412,99242
6	132424,1519	29428,2814	102995,8705	53079	57978	405852	18553,2	31363,67052	6900,008	67546,14441	111959,1368
7	131762,0312	29722,5642	102039,467	53079	57978	347874	16234,08	32726,38696	7199,805	66584,22605	178543,3629
8	131103,221	30019,7899	101083,4312	53079	57978	289896	13914,96	34089,47116	7499,684	65625,53736	244168,9002
9	130447,655	30319,9878	100127,6672	53079	57978	231918	11595,84	35452,82724	7799,622	64670,03301	308838,9332
10	129795,445	30623,1876	99172,25736	53079	57978	173940	9276,72	36816,53736	8099,638	63717,80678	372556,74
11	129146,485	30929,4195	98217,06549	53079	57978	115962	6957,6	38180,46549	8399,702	62768,78259	435325,5226
12	128500,775	31238,7137	97262,06129	53079	57978	57984	4638,48	39544,58129	8699,808	61822,96712	497148,4897
13	127858,25	31551,1008	96307,14916	53079	57978	0	2319,36	40908,78916	8999,934	60880,31639	558028,8061
14	127218,975	31866,6119	95352,36315	53079				42273,36315	9300,14	117918,8351	675947,6412
15	126582,885	32185,278	94397,60703	53079				41318,60703	9090,094	117492,7915	793440,4327
16	125949,98	32507,1308	93442,84925	53079				40363,84925	8880,047	117069,9332	910510,3658
17	125320,195	32832,2021	92487,99294	53079				39408,99294	8669,978	116650,2166	1027160,582
18	124693,595	33160,5241	91533,07092	53079				38454,07092	8459,896	116233,6994	1143394,282

19	124070,115	33492,1293	90577,98568	53079		37498,98568	8249,777	115820,3382	1259214,62
20	123449,755	33827,0506	89622,70439	53079		36543,70439	8039,615	115410,14	1374624,76
21	122832,515	34165,3211	88667,19388	53079		35588,19388	7829,403	115003,1123	1489627,872
22	122218,33	34506,9743	87711,35567	53079		34632,35567	7619,118	114599,2118	1604227,084
23	121607,265	34852,0441	86755,22093	53079		33676,22093	7408,769	114198,4964	1718425,58
24	120999,255	35200,5645	85798,69049	53079		32719,69049	7198,332	113800,9231	1832226,504
25	120394,235	35552,5702	84841,66484	53079		31762,66484	6987,786	113406,4487	1945632,952

Από τα στοιχεία του παραπάνω πίνακα προκύπτει ότι η επένδυση είναι κερδοφόρα από το 5° έτος, όπως φαίνεται και στο επόμενο γράφημα.

8. ΑΝΑΣΚΟΠΟΗΣΗ – ΣΥΜΠΕΡΑΣΜΑΤΑ

Στην παρούσα πτυχιακή εργασία μελετήθηκαν δύο περιπτώσεις εγκατάστασης φωτοβολταϊκών εγκαταστάσεων ισχύος 500kW και 1MW. Χρησιμοποιήθηκαν πάνελ πανομοιότυπα ώστε τα αποτελέσματα να είναι απολύτως συγκρίσιμα.

Στην ουσία η παραγόμενη ηλεκτρική ενέργεια διπλασιάζεται με τον διπλασιασμό της ισχύος όπως φαίνεται και στον παρακάτω πίνακα:

ΣΥΣΤΗΜΑ	Kwhr/year(500kW)	Mwhr/year(1MW)		
Σταθερές βάσεις	851066	1598		
Σταθερές βάσεις με αλλαγή κλίσης	883796	1660		
Κινητές βάσεις	946357	1786		
Κινητές βάσεις με οριζόντιο άξονα στη διεύθυνση βορρά – νότου	1030375	1945		
Κινητές βάσεις με κατακόρυφο άξονα	1045853	2089		

Αποδείχθηκε η βιωσιμότητα των επενδύσεων με κερδοφορία και στις δύο περιπτώσεις από τον πέμπτο χρόνο και ρυθμό αύξησης χρηματοροών ακριβώς ίδιο, όπως αποτυπώνεται και στα παρακάτω γραφήματα:

Γενικά αποκτήθηκε πολύτιμη γνώση όσον αφορά τη λειτουργία των φωτοβολταϊκών εγκαταστάσεων και των ποικίλων παραγόντων που θα πρέπει να ληφθούν υπόψη κατά το σχεδιασμό και την υλοποίηση τους. Κατανοήθηκε επίσης η έννοια της ιχνηλάτησης και της σημασίας της στη βελτίωση της απόδοσης της εγκατάστασης. Επίσης η οικονομική ανάλυση, αντικείμενο εντελώς νέο και άγνωστο μέχρι τώρα σε εμάς, αποτέλεσε μια εντελώς καινούρια γνώση που αποκτήθηκε μέσα από προσπάθεια κατανόησης χρηματοοικονομικών μεγεθών.

ΒΙΒΛΙΟΓΡΑΦΙΑ

[1] <u>https://ae-solar.com/history-of-solar-module/</u>

[2] https://www.solarempower.com/blog/10-solar-pv-system-losses-theirimpact-on-solar-panel-output/

- [3] <u>https://ratedpower.com/blog/choosing-pv-structures/</u>
- [4] https://sinovoltaics.com/learning-center/csp/

[5] <u>https://sunshine-</u>

energy.gr/%CF%83%CF%85%CF%83%CF%84%CE%AE%CE%BC%C E%B1%CF%84%CE%B1-%CF%83%CF%84%CE%A<u>E%CF%81%CE%B9%CE%BE%CE%B7%CF</u> %82-%CF%86%CF%89%CF%84%CE%BF%CE%B2%CE%BF%CE%BB%CF %84%CE%B1%CF%8A%CE%BA%CF%8E%CE%BD-%CF%83%CF%85%CF%83%CF%84%CE%B7%CE%BC%CE%AC%CF %84%CF%89%CE%BD/%CF%83%CF%84%CE%B1%CE%B8%CE%B5 %CF%81%CE%AC-%CF%83%CF%85%CF%83%CF%84%CE%AE%CE%BC%CE%B1%CF %84%CE%B1-%CF%83%CF%84%CE%AE%CF%81%CE%B9%CE%BE%CE%B7%CF %82-%CF%86%CF%89%CF%84%CE%BF%CE%B2%CE%BF%CE%BB%CF %84%CE%B1%CF%8A%CE%BA%CF%89%CE%BD-%CF%80%CE%BB%CE%B1%CE%B9%CF%83%CE%AF%CF%89%CE %BD

[6] <u>https://firstgreenconsulting.wordpress.com/2012/04/26/differentiate-between-the-dni-dhi-and-ghi/</u>

[7] Αθανάσιος Χασιακός. Διαχείριση Τεχνικών Έργων. Σημειώσεις μαθήματος.Πανεπιστήμιο Πατρών, Τμήμα Πολιτικών Μηχανικών

(https://eclass.upatras.gr/modules/document/file.php/CIV1529/2.2%20%CE%A0%CE%B1%CF%81%CE%BF%CF%85%CF%83%CE%AF%CE%B1%CF%83%CE%B7% 20II%20-

%20%CE%A4%CE%B5%CF%87%CE%BD%CE%B9%CE%BA%CE%AE%20%CE %9F%CE%B9%CE%BA%CE%BF%CE%BD%CE%BF%CE%BC%CE%B9%CE%B A%CE%AE%20%28%CE%95%CF%86%CE%B1%CF%81%CE%BC%CE%BF%CE %B3%CE%AD%CF%82%20%CF%83%CF%84%CE%BF%20%CF%80%CE%B5% CE%B4%CE%AF%CE%BF%20%CF%84%CE%BF%CF%85%20%CE%9C%CE%B 7%CF%87%CE%B1%CE%BD%CE%B9%CE%BA%CE%BF%CF%8D%29.pdf)

[8]

https://eclass.aueb.gr/modules/document/file.php/ODE202/%CE%A0%CE%9 1%CE%9D%CE%95%CE%A0%CE%99%CE%A3%CE%A4%CE%97%CE%9C%CE %99%CE%91%CE%9A%CE%95%CE%A3%20%CE%A0%CE%91%CE%A1%CE% 91%CE%94%CE%9F%CE%A3%CE%95%CE%999%CE%A3/10%20%CE%A4%CE %A1%CE%91%CE%A0%CE%95%CE%96%CE%999%CE%9A%CE%91%20%CE% 94%CE%91%CE%9D%CE%95%CE%99%CE%91.pdf

[9]

https://eclass.upatras.gr/modules/document/file.php/ECON1363/%CE%94%C E%B9%CE%AC%CE%BB%CE%B5%CE%BE%CE%B7%2010.pdf