

ПТYХІАКН ЕРГАЕIA

$\Sigma \Pi О Y \triangle A \Sigma T H \Sigma: ~ X P H \Sigma T O \Sigma ~ A N T I O X O \Sigma$

ANTIPPIO 2018

ЕүкрíӨŋкє $\alpha \pi o ́ ~ \tau \eta \nu \tau \rho ı \mu \lambda \lambda \eta ́ ~ \varepsilon \xi \varepsilon \tau \alpha \sigma \tau \tau \kappa \eta ́ ~ \varepsilon \pi ı \tau \rho о \pi \eta ์$
Aviíppı, / /

ЕПІТРОПН АЕІО $К О Г Н \Sigma Н \Sigma$

IINAKAE EIKON日N

Eıкóva 1: Пара́ $\delta \varepsilon \imath \gamma \mu \alpha$ WBAN
Eıкóva 2: Пара́б $\varepsilon ч \gamma \mu \alpha$ WPAN
Euкóva 3: Па $\alpha \dot{\delta} \delta \varepsilon \gamma \mu \alpha$ WLAN
Eiкóva 4: Парáסєıү $\mu \alpha$ WMAN
Eiкóva 5: Парáסєıү $\mu \alpha$ WWAN
Eıкóva 6: Tú $\pi о \imath \alpha ı \sigma \eta \tau \eta ́ \rho \omega v$
Eıко́vа 7: Пара́ $\varepsilon \varepsilon \imath \gamma \mu \alpha \alpha \imath \sigma \theta \tau \eta ŋ \rho \alpha$
Eıко́vа 8: Пара́ঠєъүна толодоүі́аs

Eıкóva 10: Пара́ $\delta \varepsilon \imath \gamma \mu \alpha$ ато́ μ оv
Eıкóva 11: $\Delta ŋ \eta \lambda \varepsilon \kappa \tau \rho ı \kappa \varepsilon ́ \varsigma ~ \tau \iota \mu \varepsilon ́ \varsigma ~ v \lambda ı \kappa ळ ́ v ~$

Eıкóva 13: E $\xi \alpha \sigma \theta \varepsilon ́ v ı \sigma \eta 2 \mu$
Eıкóva 14: E $\xi \alpha \sigma \theta \varepsilon ́ v ı \sigma \eta ~ 5 \mu$
Eıкóva 15: E $\xi \alpha \sigma \theta$ ह́vı $\sigma \eta 10 \mu$
Eıкóva 16: E $\xi \alpha \sigma \theta \varepsilon ́ v ı \sigma \eta ~ 20 \mu$

Пєрıє о́ $\mu \varepsilon v \alpha$

ПТҮХІАКН ЕРГАЕІА ．． 1
ПЕРІАНЧН 6
ЕІІАГЛГН 7
 9
1．1 ГЕNIKA－AटYPMATE Σ EПIKOINQNIE Σ 9
1．2 Tı عívaı $\tau \alpha \alpha \sigma ט ́ p \mu \alpha \tau \alpha$ סíkтv 9
 10
 13
 13
KЕФAへAIO 2 －Δ IKTYA AIL $\Theta H T H P \Omega N$ 19
2．1 H बvíxvevon 19
 19
 20
2．4 H غ $\pi \iota k o v ต$ vía $\sigma \tau \alpha$ WSNs 22
 23
2．6 Еvтотıбно̧́ каı ларакодоv́Өпбп 25
 25
 26
 26
 28
КЕФАААIO 3 －YПОВРҮXIA \triangle IKTYA AIL＠HTHP Ω N（UWSNs）． 29
3.1 इv́vтонך Iбторía $\tau \omega \nu$ UWSNs 29
3．2 Eqaриоүદ́¢ тшv UWSNs 30
3.3 BEムTİTH ТОПОఆЕТНГН TתN UWSNS 31
3．4 OI ПРОКАHГEİ Σ XEDIAミMOY UWSN 32
3．5 OI \triangle IAФOPE Σ ME TA ЕПIГEIA \triangle IKTYA AI $\Theta H T H P \Omega N$ 32
3.6 TPOПOI META \triangle O$\Sigma H \Sigma \Sigma$ TO NEPO 34
 35
3.8. MONTE Λ O $\triangle \mathrm{IA} \triangle \mathrm{O} \Sigma \mathrm{H} \Sigma$ HM KYMATO 38
3.9 ГҮМПЕРАГМА 44
КЕФАЛAIO 4 - TO ЛОГIГMIKO OCTAVE 45
4.1 TO КОГІІМIKO OCTAVE. 45
4.2 Н МЕӨО \triangle ОЛОГІА 45
ВІВАІОГРАФІА 47

ПЕРІАНЧН

 (Wireless Local Area Networks, WLAN), $\alpha \lambda \lambda \alpha ́ \kappa \alpha ı ~ \tau \alpha ~ \alpha \sigma ט ́ \rho \mu \alpha \tau \alpha ~ \delta i ́ к \tau v \alpha ~ \alpha ı \sigma \theta \eta \tau \eta ́ \rho \omega v ~$ (Wireless Sensors Networks, WSN), $\chi \rho \eta \sigma \mu о \pi о \iota o v ́ v \tau \alpha ı ~ \varepsilon \cup \rho \varepsilon ́ \omega \varsigma ~ к \alpha ı ~ \varepsilon ́ \chi о v v ~ \gamma i v \varepsilon ı ~ \alpha \pi \alpha \rho \alpha i ́ \tau \eta \tau о ~$

 $\alpha \pi o ́ \alpha v \tau \alpha ́ ~ \varepsilon ́ v \alpha ı ~ \eta ~ \varepsilon ́ v v o ı \alpha ~ \tau \omega v ~ \ll 3 A \gg: ~ \varepsilon \pi ı к o \imath \omega \omega v i ́ \alpha ~ о \pi о v \delta \eta ́ \pi о \tau \varepsilon ~(A n y w h e r e), ~ о \pi о \tau \varepsilon \delta \dot{\eta} \pi о \tau \varepsilon$ (Anytime), каı $\mu \varepsilon$ олоюov $\delta \dot{\eta} \pi о \tau \varepsilon$ (Anyone).

 $\kappa . \lambda \pi$.). Н $\chi \rho \eta ์ \sigma \eta ~ \tau \omega \nu$ WSNs $\delta \varepsilon v \pi \varepsilon \rho \ldots \rho i ́ \zeta \varepsilon \tau \alpha l ~ \varphi v \sigma ı \kappa \alpha ́ ~ \mu o ́ v o ~ \sigma \tau о v \varsigma ~ \pi \alpha \rho \alpha \pi \alpha ́ v \omega ~ \tau о \mu \varepsilon i ́ ̧ ~ \alpha \lambda \lambda \alpha ́ ~$

ЕІІАГЛГН

 ко́бтоs. [Абט́pната $\Delta i ́ \kappa \tau v \alpha] ~$

 $Н v \omega \mu \varepsilon ́ v \omega v$ Подıтє1ఱ́v. [Wireless Ad Hoc and Sensor Networks]

 викодо́тєрๆ. Характпрıбтוко́ $\pi \alpha \rho \alpha ́ \delta \varepsilon ı \gamma \mu \alpha ~ \chi \rho \eta ́ \sigma \eta \varsigma ~ U W S N ~ \varepsilon i ́ v \alpha ı ~ \sigma \tau ı \varsigma ~ \pi \lambda \alpha \tau \varphi o ́ \rho \mu \varepsilon \varsigma ~$

 каı $\delta 1 \alpha \sigma \omega ́ \sigma \varepsilon ı \varsigma$.

 $\tau \alpha$ олтька́.

KEФAАAIO 1 - AЕYPMATE E EIIKOINQNIE

1.1. ГENIKA - AEYPMATE E EIIKOINQNIE

 $\varepsilon \pi \iota \varphi \varepsilon ́ \rho \varepsilon \imath ~ \kappa \alpha ı ~ \alpha v \alpha \mu \varepsilon ́ v \varepsilon \tau \alpha ı ~ v \alpha ~ \delta \omega ́ \sigma o v v ~ \alpha к о ́ \mu \eta ~ \mu \varepsilon \gamma \alpha \lambda v ́ \tau \varepsilon \rho \eta ~ \grave{\theta} \eta \eta \sigma \eta ~ \sigma \tau о \nu ~ \tau о \mu \varepsilon ́ \alpha ~ \tau \omega v ~ \alpha \sigma ט ́ \rho \mu \alpha \tau \omega v$ ел兀коишตvióv.

 [Kєpaíє̧ Aøv́ $\rho \mu \alpha \tau \varepsilon \varsigma ~ Z \varepsilon v ́ \xi \varepsilon ı \varsigma] ~$

1.2 Tı $\varepsilon ́ v \alpha ı ~ \tau \alpha ~ \alpha \sigma u ́ \rho \mu \alpha \tau \alpha ~ \delta i ́ к \tau v \alpha ~$

 Area Networks), $\tau \alpha$ абט́pи $\alpha \tau \alpha$ тотıк α סíктv α WLANs (Wireless Local Area Networks), $\tau \alpha$ $\alpha \sigma ט ́ \rho \mu \alpha \tau \alpha \mu \eta \tau \rho о \pi о \lambda \imath \tau \iota \alpha \dot{\delta} \dot{\kappa} \kappa \tau v \alpha$ WMAN (Wireless Metropolitan Area Networks) $\kappa \alpha \iota \tau \alpha$

 ［Wireless Communications－Goldsmith］

1.3 इv́ $\gamma \kappa \rho เ \sigma \eta \alpha \sigma v ́ \rho \mu \alpha \tau \eta \varsigma-\varepsilon v \sigma v ́ \rho \mu \alpha \tau \eta \varsigma \delta \kappa \tau v ́ \omega \sigma \eta \varsigma$

 $\varepsilon \vee \sigma ט ́ \rho \mu \alpha \tau \eta$ ．

No	Характпрıбтıќ	Evoúphata	Ađúphata
1	Еүката́бтабп	$\kappa \alpha \lambda \dot{\omega} \delta ı \alpha)$	Eúко入П
2	Opatótnta ко́ μ ßои $\mu \varepsilon$ ко́ $\mu ß$ ои бто íठıо סíkтuo	К $\dot{\theta} \theta \varepsilon$ ко́ $\mu \beta$ оऽ $\sigma \varepsilon$ عvбúриато uró入otrous	По入ú кó $\mu \beta$ ı $\delta \varepsilon v$ $\mu \pi о \rho о u ́ v ~ v \alpha ~ \alpha к о u ́ \sigma o u v ~$ व́入入оu̧ ко́ μ ßouç tou סıктúou
3	Opatótทta aró 	Ta ठíkTua عívaı aópata $\sigma \varepsilon$ á $\lambda \lambda \alpha$ घvбúpuata סíktua．H тароиđía عvós $\varepsilon v \sigma u ́ p \mu a t o u ~ ठ ו к т u ́ o u ~ ठ \varepsilon v ~$ घvoúp $\mu a t o u$ ठıктúou	Ta aбúp μ тта סíkтua عívaı ouxvá opatá $\sigma \varepsilon$ ＇Eva aбúp тఇv atóסoõ ád $\lambda \lambda \omega v$ aбúp $\mu a t \omega v$ ठוктú ωv ．
4	Xpóvos غүката́бтабпऽ	 	лıүо́тєро（סॄv đuvঠદ́のモIS）
5	Kóotos	＾ıүо́тєро（тє́тоıа Ethernet， ठаттаทๆра́）	Пєріббо́тєра （aбúp ato। $^{\prime}$ тробариоүві́ऽ каı опиєía тро́бßаопs عívaı аркєта́ акрıß́̉́）
6	хрฑ́бтп	H סuvatótఇTa oúvס̌ans عívaı סuvatí нóvo троऽ ท́ ато́ тіऽ $\varepsilon к т \varepsilon i ́ v \varepsilon т а ı ~ \eta ~ к а \lambda \omega \delta i ́ \omega \sigma \eta ~ ठ ı к т и ́ о u ~$	H ठuvatótףTa тє́ра ато́ та ópıa tns סıктúou
7	Kıvทtıкótnta	 итолоүוбтє́ऽ $\mu \varepsilon$ то ठі́ктио）	otov aбúp α वто хри́бтп бúvঠृఠп वто ठі́ктטо каı ε єाккoוv ω vía $\mu \varepsilon$ ád λ ous хрйбтєऽ ото।のסŋ́тотє отіүий，отоиסŋ்́тотє）

8	A¢ıотıбтia	swithes عívaı a६ıómıбта $\varepsilon ा \varepsilon ı ס ́ n ́ ~$ О о катабкєиабтє́s દ́Xouv $\beta \varepsilon \lambda t ı \mu \mu \varepsilon ́ v \eta ~ t \varepsilon \chi v o \lambda o y i ́ a ~ y ı a ~$ аркєтє́ऽ ठєкаєтієऽ）	عáv то ки́ріо т $\mu \grave{\mu} \mu$ а катаррєúбとı о入óк入про то ठі́ктиo θ a عппргабтєі）
9	Taxútnta к α عúpos そผ́vns	Y $\Psi \eta \lambda$ ń ε ć $\omega ¢ 100 \mathrm{mbps}$	X $\alpha \mu \eta \lambda \grave{\prime}$ ह́ $\omega \varsigma 54$ mbps（ пр $\boldsymbol{\tau}$ о́ко λ 人о）
10	K $\alpha \lambda \omega \dot{\omega}$ ¢ α		＾عוтоupүยí бта раб̈оки́ $\boldsymbol{\mu} \boldsymbol{\tau} \alpha$ ка। нıкроки́ната
11	Hubs kal switches	Nat	Oxt
12	Aбфо́入ııа	лоүıбніко́，о́тшs лоүібнкко́ firewall к．лт．）	би́ната абúp ${ }^{\text {atins }}$ ε птікoivwvías та६ıбॄúouv otov á́pa каı μ торои́v عúко入а va Uтоклатои́v $\alpha \lambda \lambda \alpha ́$ $\beta \varepsilon \lambda t i \omega ́ v o v t a \mid$
13	Túto	Local Area Network（LAN） Metropolitan Area network（MAN） Wide Area Network（WAN）	1．Мє биүкоо́tๆбף каı $\alpha \rho \chi$ เтєктоvıкй סıктúou －$\Delta о \mu \eta \mu \varepsilon ́ v \alpha$ －Aסó $\mu \eta \tau \alpha$ 2． $\mathrm{M} \varepsilon \tau \eta v \pi \varepsilon \rho เ o \chi n ́$ ко́入uษŋ̧ －Wireless Local Area Network（WLAN） －Wireless metropolitan Area network（WMAN） －Wireless Wide Area Network（WWAN） －Wireless Personal Area Network（WPAN） 3． $\mathrm{M} \varepsilon \tau \eta \vee \tau \varepsilon \chi v o \lambda o \gamma i \alpha$ $\pi \rho о \sigma \pi \varepsilon ่ \lambda \alpha \sigma \eta \varsigma$ －GSM Network －TDMA Networks －CDMA Networks Tútol $\alpha \sigma u ́ p \mu \alpha \tau \omega v$ δ Іктú ωv

			－Wi－Fi（802．11） Networks －Hyperlan2 Networks －Bluetooth Networks －Infrared Networks
14	Про́тuta	802.3	－ 802.11 a － 802.11 b － 802.11 g － 802.11 n － 802.11 ac
15	Aтஸ்خعıа oń μ атоs каı E§aఠӨغ́vion	 лүо́тєрєऽ）	Пعрıббо́тєро（入óүш пعрıббо́тєрクs тарє μ ßо入и́ऽ， аторро́чๆбпs， ठıáӨ入aoŋ каı avák $\lambda a \neq \eta$ к．$\lambda т$ ．）
16	Парєرßо入и́	Лıүо́тєро（Ta סíkтua عívaı ао́рата $\sigma \varepsilon$ á $\lambda \lambda \alpha$ ع \quad бט́p $\mu \alpha$ та ठі́ктua．H тароưóa عVós £voúpuatou ठıктúou á λ 人ou єvбúpuato סі́ктиo）	Y $\uparrow \eta$ 入óтєрп （тіӨavótnta рабıотарєнßо入ஸ́v тои очві́入єта। व́ $\lambda \lambda \varepsilon \varsigma$ aбúp $\mu \alpha \tau \varsigma$ бu〒Kદบモ́ऽ ท́ тоі́хоו）
17	X ρ óvos єүкаӨíסpuons 	лıүо́тро	Пعрıбоо́тєро
18	Quality of Service	K $\alpha \lambda$ úte¢o	Фт ω хо́т $\varepsilon \rho 0$（ ε दаıtías uџП入oú jitter， KaӨuotépクoŋ）

 $\mu \varepsilon \gamma \alpha ́ \lambda \varepsilon \varsigma ~ \alpha \pi о \sigma \tau \alpha ́ \sigma \varepsilon ı \varsigma ~ \kappa \alpha \tau \alpha ́ ~ \tau \eta ~ \delta \varepsilon к \alpha \varepsilon \tau i ́ \alpha ~ 1905-1915 . ~ A \pi o ́ ~ \tau o ́ \tau \varepsilon ~ \mu \varepsilon ́ \chi \rho ı ~ \sigma \eta ́ \mu \varepsilon \rho \alpha ~ \varepsilon ́ \chi о v v ~$

 $\varepsilon \pi \iota \tau \cup \chi \eta \mu \varepsilon ́ v o ~ \alpha \sigma ט ́ \rho \mu \alpha \tau о ~ \delta i ́ к \tau v o ~ \varepsilon \pi ı к о เ ข ต v ı \omega ́ v ~ \mu \varepsilon ́ \chi \rho ı ~ \tau ı \varsigma ~ \mu \varepsilon ́ \rho \varepsilon \varsigma ~ \mu \alpha \varsigma . ~[А \sigma ט ́ \rho \mu \alpha \tau \alpha ~ \Delta i ́ к \tau v \alpha] ~$

1.5 К $\boldsymbol{\text { Ктך } \gamma о \rho i ́ \varepsilon \varsigma ~ A \sigma v ́ \rho \mu \alpha \tau \omega v ~ \Delta ı к \tau v ́ \omega v ~}$

Aбv́p $\mu \alpha \tau \alpha \sigma \omega \mu \alpha \tau \iota \kappa \alpha ́$ ס́́ктv (Wireless Body Area Networks - WBANs).

T α WBAN $\alpha \pi о \tau \varepsilon \lambda$ oúvtal $\alpha \pi o ́ ~ \varepsilon ́ v \alpha v ~ \alpha \rho ı \theta \mu o ́ ~ \alpha ı \sigma \theta \eta \tau \eta ́ \rho \omega v . ~ A v \tau o i ́ ~ o l ~ \alpha ı \sigma \theta \eta \tau \eta ́ \rho \varepsilon \varsigma ~$

 Body Area Networks: Applications and Technologies]

Eıкóvo 1

Абv́ $\mu \mu \tau \alpha \pi \rho о \sigma \omega \pi \iota \kappa \alpha ́$ סíктvа (Wireless Personal Area Networks - WPANs).

T α סíктva $\pi \rho о \sigma \omega \pi \iota к \eta ́ s ~ \pi \varepsilon \rho ı о \chi \eta ́ s ~(W i r e l e s s ~ P e r s o n a l ~ A r e a ~ N e t w o r k s ~-~ W P A N s) ~ \varepsilon i ́ v a ı ~$

 [Aбט́ $\mu \mu \alpha \tau \Delta$ íк $\tau v \alpha$]

Eıкóvo 2

Абv́риата толики́ סíктvа (Wireless Local Area Networks - WLANs).

T $\alpha \alpha \sigma v ́ \rho \mu \alpha \tau \alpha$ толıка́ $\delta i ́ \kappa \tau v \alpha ~(W i r e l e s s ~ L o c a l ~ A r e a ~ N e t w o r k s ~-~ W L A N s) ~ \pi \alpha \rho \varepsilon ́ \chi o u v ~ v \psi \eta \lambda \varepsilon ́ \varsigma ~$

[^0]
Aбv́риата $\mu \eta \tau \rho о \pi о \lambda ı \tau \iota \alpha ́$ סíктv (Wireless Metropolitan Area Networks WMANs).

 (BWA) $\quad \gamma 1 \alpha$ то $\alpha \sigma v ́ \rho \mu \alpha \tau о \quad \mu \eta \tau \rho о \pi о \lambda \iota \tau \iota к$ о́
 غ́к $\varphi \rho \alpha \sigma \eta$ WiMAX (Worldwide Interoperability for Microwave Access) $\alpha \pi$ ó $\mu 1 \alpha$

 $\mu \varepsilon$ то б $\mu \varepsilon$ ќo $\alpha \sigma ט ́ \rho \mu \alpha \tau \eta \varsigma ~ \pi \rho о ́ \sigma \beta \alpha \sigma \eta \varsigma . ~ Н ~ \pi \rho \omega ́ \tau \eta ~ \alpha v \alpha \theta \varepsilon \omega ́ \rho \eta \sigma \eta ~ \tau о v ~ \pi \rho о \tau v ́ \pi о v ~ 802.16 ~$

 of Wireless Networks of WPAN, WLAN, WMAN and WWAN]

HOW WIMAX WORKS

T α WWAN ка入v́лтоטv $\pi \varepsilon \rho ı о \varepsilon ́ \varsigma ~ \mu ı \alpha \varsigma ~ \eta ́ ~ \pi \varepsilon \rho ı \sigma \sigma о \tau \varepsilon ́ \rho \omega v ~ \chi \omega \rho \omega ́ v ~ \kappa \alpha ı ~ \varepsilon i ́ v \alpha l ~ \varepsilon v \rho \varepsilon ́ \omega \varsigma ~$ $\delta i \alpha \delta \varepsilon \delta о \mu \varepsilon ́ v \alpha \sigma \tau \eta \nu \kappa \imath \eta \tau \eta ́ \tau \eta \lambda \varepsilon \varphi \omega v i ́ \alpha ~ \kappa \alpha ı \pi \alpha \rho \varepsilon ́ \chi \circ v v \tau \eta \nu \delta v \nu \alpha \tau o ́ \tau \eta \tau \alpha \mu \varepsilon \tau \alpha \varphi о \rho \alpha ́ \varsigma ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \omega v$. T α WWAN $\varepsilon i ́ v \alpha ı ~ \gamma \nu \omega \sigma \tau \alpha ́ ~ \varepsilon \pi i ́ \sigma \eta \varsigma ~ \kappa \alpha ı ~ \omega \varsigma ~ 3 G ~ \kappa \alpha ı ~ 4 G ~ \delta i ́ к \tau v \alpha . ~$
[http://www8.hp.com/h30458/ww/en/smb/927462.html]

КЕФАААIO 2 - $\boldsymbol{\Delta I K T Y A ~ A I \Sigma \Theta H T H P \Omega N ~}$

[Fundamentals of Wireless Sensor Networks Theory and Practice]

2.2 T $\alpha \xi ı$ о́ $\mu \eta \sigma \eta \alpha \iota \sigma \theta \eta \tau \eta{ }^{\prime} \rho \omega \nu$

 $\mu \pi$ орои́v va $\beta \alpha \sigma \iota \sigma \tau о v ́ v ~ \sigma \varepsilon ~ \delta \iota \alpha ́ \varphi o \rho \varepsilon \varsigma ~ \alpha ́ \lambda \lambda \varepsilon \varsigma ~ \mu \varepsilon \theta o ́ \delta o v \varsigma, ~ \gamma ı \alpha ~ \pi \alpha \rho \alpha ́ \delta \varepsilon \gamma \gamma \mu \alpha, ~ \varepsilon \alpha ́ v ~ \alpha \pi \alpha ı \tau о v ́ v ~$

Type	Examples
Temperature	Thermistors, thermocouples
Pressure	Pressure gauges, barometers, ionization gauges
Optical	Photodiodes, phototransistors, infrared sensors, CCD sensors
Acoustic	Piezoelectric resonators, microphones
Mechanical	Strain gauges, tactile sensors, capacitive diaphragms, piezoresistive cells
Motion, vibration	Accelerometers, gyroscopes, photo sensors
Flow	Anemometers, mass air flow sensors
Position	GPS, ultrasound-based sensors, infrared-based sensors, inclinometers
Electromagnetic	Hall-effect sensors, magnetometers
Chemical	pH sensors, electrochemical sensors, infrared gas sensors
Humidity	Capacitive and resistive sensors, hygrometers, MEMS-based humidity sensors
Radiation	Ionization detectors, Geiger-Mueller counters

Eıкóva 6

[Fundamentals of Wireless Sensor Networks Theory and Practice]

 chip (SoC))
’Еva $\alpha \sigma ט ́ \rho \mu \alpha \tau o ~ \delta i ́ k \tau v o ~ \alpha ı \sigma \theta \eta \tau \eta ́ \rho \omega v ~(W S N) ~ \varepsilon i ́ v a l ~ \varepsilon ́ v \alpha ~ \delta i ́ к \tau v o ~ \pi о ט ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ \tau \alpha ı ~ \alpha \pi o ́ ~ \mu \varepsilon \gamma \alpha ́ \lambda о ~$

 $\gamma 1 \alpha$ то Δ l $\alpha \delta i ́ k \tau v o . ~$

AA Batteries

Eıкóva 7

 ε пाıoiv ω vía.

 бuvठぇठદ μ ह́vo

ठ́́ktuo

 ε пıтUXท́ $\mu \varepsilon T a ́ \delta ̄ o \sigma \eta ~ T \omega V ~ ठ \varepsilon \delta ठ о \mu \varepsilon ́ v \omega V ~ \sigma T O V ~ \Pi \rho o o \rho ı \sigma \mu o ́ . ~$
［Internet of Things：Wireless Sensor Networks］

2．4 H єлıкоıvตví $\alpha \boldsymbol{\sigma \tau \alpha}$ WSNs

 802．11b каı IEEE 802.11 g ，$\varepsilon \vee \omega ́ ~ \tau о ~ \pi \rho \omega \tau о ́ к о \lambda \lambda о ~ I E E E ~ 802.11 а ~ \chi \rho \eta \sigma \mu о \pi о 七 є i ́ ~ \tau \eta ~ \zeta ळ ́ v \eta ~$

Eıкóva 8

 то $\alpha v \alpha \gamma \kappa \alpha i ́ o . ~ A v \tau o ́ ~ \varepsilon ́ \chi \varepsilon 1 ~ о \delta \eta \gamma \eta ́ \sigma \varepsilon 1 ~ \sigma \tau \eta \nu ~ \alpha v \alpha ́ \pi \tau v \xi \eta ~ \mu i \alpha \varsigma ~ \pi о ı \kappa ı \lambda i ́ \alpha \varsigma ~ \pi \rho \omega \tau о к о ́ \lambda \lambda \omega \nu ~ \pi о v ~$
 $\chi \alpha \mu \eta \lambda \varepsilon ́ \varsigma ~ \tau \alpha \chi v ́ \tau \eta \tau \varepsilon \varsigma ~ \mu \varepsilon \tau \alpha \varphi о \rho \alpha ́ \varsigma ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \omega v$ ．Гı $\alpha \pi \alpha \rho \alpha ́ \delta \varepsilon ı \gamma \mu \alpha, \tau$ т $\pi \rho \omega \tau$ о́ко $\lambda \lambda$ о IEEE 802．15．4 （Gutierrez et al．，2001）દ́ $\chi \varepsilon 1 ~ \sigma \chi \varepsilon \delta ı \alpha \sigma \tau \varepsilon i ́ ~ \varepsilon ı \delta ı \kappa \alpha ́ ~ \gamma ı \alpha ~ \pi \alpha \rho \alpha \mu \varepsilon \tau \rho о \pi о i ́ \eta \sigma \eta ~ \varepsilon \pi ı \kappa о ぃ \omega \omega \imath \omega ́ v ~ \sigma \varepsilon ~$
 $\alpha \kappa \alpha \delta \eta \mu \alpha$ коv́я каı єцлорıкои́я ко́ μ ßо七ऽ $\alpha ı \sigma \eta \tau ท ́ \rho \omega v$.
'О $\tau \alpha \nu$ оı $\pi \varepsilon \rho ı \chi \varepsilon ́ \varsigma ~ \varepsilon к \pi о \mu \pi \eta ́ \varsigma ~ \tau \omega \nu ~ \rho \alpha \delta ı \pi о \mu \pi \omega ́ v ~ o ́ \lambda \omega v ~ \tau \omega \nu ~ к о ́ \mu \beta \omega \nu ~ \alpha ı \sigma \theta \eta \tau \eta ́ \rho \omega v ~ \varepsilon i ́ v \alpha ı ~$
 бтоv $\sigma \tau \alpha \theta \mu$ о́ $\beta \alpha ́ \sigma \eta \varsigma, ~ \mu \pi о \rho о и ́ v ~ v \alpha ~ \sigma \chi \eta \mu \alpha \tau i ́ \sigma o v v ~ \mu ı \alpha ~ \tau о \pi о \lambda о \gamma i ́ \alpha ~ \alpha \sigma \tau \varepsilon ́ \rho \alpha . ~ \Sigma \varepsilon ~ \alpha v \tau \eta ́ ~ \tau \eta v ~$

 $\gamma \varepsilon \omega \gamma \rho \alpha \varphi \iota \kappa \varepsilon ́ \varsigma ~ \pi \varepsilon \rho ı \chi \varepsilon ́ \varsigma$,

 бтๆ $\beta \alpha ́ \sigma \eta, ~ \varepsilon i ́ v \alpha ı \mu ı \alpha ~ \alpha \pi o ́ ~ \tau ı \varsigma ~ \sigma \eta \mu \alpha \nu \tau ı к о ́ \tau \varepsilon \rho \varepsilon \varsigma ~ \pi \rho о к \lambda \eta ́ \sigma \varepsilon ı \varsigma ~ \kappa \alpha ı ~ \varepsilon ́ \chi \varepsilon 1 ~ \lambda \alpha ́ \beta \varepsilon 1 ~ \tau \varepsilon \rho \alpha ́ \sigma \tau ı \alpha ~ \pi \rho о \sigma о \chi \eta ́ ~$
 $\delta 1 \alpha \delta \rho о \mu \varepsilon ́ \varsigma, ~ \varepsilon ́ \chi \varepsilon 1 ~ \sigma \cup \chi \nu \alpha ́ ~ \tau \eta ~ \delta v v \alpha \tau о ́ \tau \eta \tau \alpha ~ \alpha \nu \alpha ́ \lambda v \sigma \eta \varsigma ~ \kappa \alpha 1 ~ \pi \rho о \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ \tau \omega v ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \omega \nu$

 $\alpha \rho \chi \iota \alpha \dot{\alpha} \delta \varepsilon \delta o \mu \varepsilon ́ v \alpha$ [Fundamentals of Wireless Sensor Networks Theory and Practice]

2.5 Xpoviкós $\Sigma v \gamma \chi \rho 0 v \imath \sigma \mu o ́ s$

 катаvєцๆ μ в́v ωv ко́ $\mu \beta \omega v$.

 દívaı $\mu \varepsilon \gamma \alpha ́ \lambda \eta ~ \kappa \alpha ı ~ \delta \alpha \pi \alpha \nu \eta \rho \eta ́ . ~ E \pi i ́ \sigma \eta \varsigma, ~ \delta \varepsilon \delta о \mu \varepsilon ́ v o v ~ o ́ \tau ı ~ o ı ~ \alpha ı \sigma \theta \eta \tau \eta ́ \rho \varepsilon \varsigma ~ \alpha v \alpha \pi \tau v ́ \sigma \sigma o v \tau \alpha l ~ \sigma u v \eta ́ \theta \omega \varsigma ~$ $\sigma \varepsilon ~ \sigma \kappa \lambda \eta \rho \alpha ́ ~ \pi \varepsilon \rho ı \alpha \dot{\alpha \lambda \lambda о \nu \tau \alpha, ~ \tau \alpha ~ \sigma \eta ́ \mu \alpha \tau \alpha ~ G P S ~ \varepsilon i ́ v \alpha ı ~ \sigma ט \chi v \alpha ́ ~ \alpha \pi \rho o ́ \sigma ı \tau \alpha . ~ O ı ~ \tau \varepsilon \chi \nu ו \kappa \varepsilon ́ \varsigma ~}$

 боүкрívочнє $\mu \varepsilon \tau \alpha$ єлíүєı WSNs. $\Sigma \varepsilon \alpha v \tau \alpha ́ ~ \tau \alpha ~ \chi \alpha \rho \alpha к \tau \eta \rho ı \sigma \tau ı к \alpha ́ ~ \pi \varepsilon \rho ı \lambda \alpha \mu \beta \alpha ́ v o v \tau \alpha ı: ~ \eta ~$

[A Survey On Various Time Synchronization Techniques In Underwater Sensor Networks]

 боүхроvıб μ о́:

- Акрíßєı (Accuracy): Н акрíßєı $\tau \eta \varsigma ~ \tau \varepsilon \chi \nu ı \kappa \eta ́ \varsigma ~ \sigma v \gamma \chi \rho о \nu ı \sigma \mu о и ́ ~ \varepsilon \xi \alpha \rho \tau \alpha ́ \tau \alpha ı ~ \sigma \varepsilon ~ \mu \varepsilon \gamma \alpha ́ \lambda о ~$ $\beta \alpha \theta \mu o ́ \alpha \pi o ́ ~ \tau \eta \nu \varepsilon \varphi \alpha \rho \mu о \gamma \grave{\text { б }}$.

 $\alpha \lambda \lambda \alpha \gamma \varepsilon ́ \varsigma ~ \sigma \tau о ~ \delta i ́ \kappa \tau v o ~ \kappa \alpha ı ~ v \alpha ~ \lambda \varepsilon ı \tau о \cup \rho \gamma \varepsilon i ́ ~ \sigma \varepsilon ~ o ́ \lambda \varepsilon \varsigma ~ \tau ı \varsigma ~ \pi \varepsilon \rho ı \pi \tau ஸ ́ \sigma \varepsilon ı \varsigma . ~$
- Eve入ı ξ ía (Scalability): $\Sigma \varepsilon$ о $\uparrow \iota \mu \varepsilon ́ v \varepsilon \varsigma ~ \varepsilon \varphi \alpha \rho \mu о \gamma \varepsilon ́ \varsigma, ~ \delta \varepsilon \kappa \alpha ́ \delta \varepsilon \varsigma ~ \chi ı \lambda ı \alpha ́ \delta \varepsilon \varsigma ~ \alpha ı \sigma \theta \eta \tau \eta ́ \rho \varepsilon \varsigma ~$

- Δ ıápкєıа $\zeta \omega \eta ́ s ~(L o n g e v i t y): ~ М \varepsilon ~ \beta \alpha ́ \sigma \eta ~ \tau \eta \nu ~ \varepsilon \varphi \alpha \rho \mu о \gamma \eta ́, ~ о ~ \sigma v \gamma \chi \rho о v ı \sigma \mu o ́ s ~ \chi \rho o ́ v o v ~$
 ठiаркє́бєı о́бо $\lambda \varepsilon \imath \tau о \cup \rho \gamma \varepsilon i ́ ~ \tau о ~ \delta i ́ к \tau v o . ~$
- Еvєрүєıакŋ́ $\alpha \pi$ о́бобך (Energy efficiency): Ot кó $\mu \beta$ or $\delta 1 \kappa \tau v ́ o v ~ \varepsilon ́ \chi o u v ~$

 $\pi \varepsilon \rho ı \rho ı \sigma \mu$ о́.

 $\chi \alpha \mu \eta \lambda$ о́тєроя.
[Time Synchronization in Wireless Sensor Networks: A Survey]

2.6 Еvтолıб μ ó̧ каı $\pi \alpha \rho \alpha к о \lambda о v ์ \theta \eta \sigma \eta ~$

2.7 Evépүєı - 'Еגє

[R-MAC: An Energy-Efficient MAC Protocol for Underwater Sensor Networks]

 $\pi \alpha \kappa \varepsilon ́ \tau \omega \nu ~ \delta \varepsilon \delta o \mu \varepsilon ́ v \omega \nu$ (data packet collision) $\alpha \pi o ́ ~ \tau \eta \nu$ д́лочך $\tau \eta \varsigma ~ \kappa \alpha \tau \alpha v \alpha ́ \lambda \omega \sigma \eta \varsigma ~ \varepsilon v \varepsilon ́ p \gamma \varepsilon ı \alpha \varsigma . ~$

 [R-MAC: An Energy-Efficient MAC Protocol for Underwater Sensor Networks]

Н $\alpha \sigma \varphi \dot{\alpha} \lambda \varepsilon ı \alpha ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \pi \rho о ́ к \lambda \eta \sigma \eta ~ \gamma 1 \alpha ~ \tau \alpha ~ \sigma ט \sigma \tau \eta ́ \mu \alpha \tau \alpha ~ к \alpha ı ~ \tau \alpha ~ \delta i ́ к \tau \cup \alpha ~ v \pi о \lambda о \gamma ı \sigma \tau \omega ́ v ~ \gamma ı \alpha ~$

 $\alpha 1 \sigma \theta \eta \tau \eta ์ \rho \varepsilon \varsigma$.

 $\pi \rho \varepsilon ́ \pi \varepsilon \iota ~ v \alpha ~ \sigma u v \varepsilon \rho \gamma \alpha ́ \zeta о \nu \tau \alpha ı ~ \gamma ı \alpha ~ \tau \eta \nu ~ \varepsilon \pi i ́ \tau \varepsilon \cup \xi ̆ \eta ~ \alpha \sigma \varphi \alpha ́ \lambda \varepsilon ı \alpha \varsigma$.

 $\kappa \alpha v \alpha \lambda ı v ́, ~ \tau \omega v ~ \sigma \varphi \alpha \lambda \mu \alpha ́ \tau \omega v ~ \delta \rho о \mu о \lambda o ́ \gamma \eta \sigma \eta s ~ к \alpha ı ~ \tau \omega v ~ \sigma о \gamma к р о v ́ \sigma \varepsilon \omega v . ~ A v \tau o ́ ~ \mu \pi о р \varepsilon i ́ ~ v \alpha ~$

[Fundamentals of Wireless Sensor Networks Theory and Practice]

[Congestion in Wireless Sensor Networks and Mechanisms for Controlling Congestion]

$2.10 \Delta \rho о \mu о \lambda о ́ \gamma \eta \sigma \eta \delta \varepsilon \delta о \mu \varepsilon ́ v \omega v$ каı $\Delta ı \alpha \chi \varepsilon i ́ \rho ı \sigma \eta$ Tолодоүías

'Eva WSN $\pi \circ 0$ દ́ $\chi \varepsilon ı ~ \varepsilon \gamma \kappa \alpha \tau \alpha \sigma \tau \alpha \theta \varepsilon i ́ ~ \sigma \varepsilon ~ \varepsilon ́ v \alpha ~ \delta v o \pi \rho o ́ \sigma ı \tau о ~ \mu \varepsilon ́ p o \varsigma, ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \chi \alpha ́ \sigma \varepsilon ı, ~ \kappa \alpha ́ \tau \omega ~ \alpha \pi o ́ ~$

 Avapє९ó $\mu \alpha \sigma \tau \varepsilon \sigma \varepsilon \alpha v \tau \alpha ́ \alpha \alpha \pi \rho \omega \tau о ́ к о \lambda \lambda \alpha \omega \varsigma$ multihop. Ta single hop $\pi \rho \omega \tau о ́ к о \lambda \lambda \alpha$ عívaı

 каva入ıóv. [Wireless Ad Hoc and Sensor Networks]

$3.1 \Sigma v ์ v \tau о \mu \eta$ Iбторí $\alpha \tau \omega v$ UWSNs

 $\varepsilon \pi \iota \kappa o v ต \omega v i ́ \alpha$. [Wireless Ad Hoc and Sensor Networks]

 $\alpha \cup \xi \eta \mu \varepsilon ́ v o ~ \varepsilon v \delta ı \alpha \varphi \varepsilon ́ \rho о v ~ \gamma ı \alpha ~ \pi о \lambda ı \tau \iota \kappa \varepsilon ́ \varsigma ~ \varepsilon \varphi \alpha \rho \mu о \gamma \varepsilon ́ \varsigma, ~ \sigma \cup \mu \pi \varepsilon \rho ı \lambda \alpha \mu \beta \alpha \nu о \mu \varepsilon ́ v \eta \varsigma ~ \tau \eta \varsigma ~ \alpha v \alpha ́ \pi \tau v \xi \eta \varsigma$

 $\alpha v \alpha ́ \gamma \kappa \eta ~ \gamma 1 \alpha \kappa \alpha \lambda \omega ́ \delta ı \alpha ~ \kappa \alpha ı ~ \delta \varepsilon v ~ \pi \alpha \rho \varepsilon \mu \beta \alpha i ́ v o v v ~ \sigma \tau \eta ~ v \alpha v \tau i \lambda ı \alpha \kappa \eta ́ ~ \delta \rho \alpha \sigma \tau \eta \rho ı о ́ \tau \eta \tau \alpha . ~ \Sigma \eta ́ \mu \varepsilon \rho \alpha ~ \eta$ $\varepsilon \pi \varepsilon ́ \kappa \tau \alpha \sigma \eta ~ \tau \omega v ~ \delta ı \kappa \tau v ์ \omega v ~ \alpha ı \sigma \theta \eta \tau \eta ́ \rho \omega v$ (WSNs) $\sigma \tau \alpha ~ v \pi о \theta \alpha \lambda \alpha ́ \sigma \sigma \iota \alpha ~ \delta i ́ \kappa \tau v \alpha ~ \alpha l \sigma \theta \eta \tau \eta ́ \rho \omega v$

 $\pi \lambda \varepsilon о v \varepsilon \kappa \tau \eta \dot{\mu} \mu \tau \alpha \mu \varepsilon \tau \alpha \varepsilon \pi i ́ \gamma \varepsilon 1 \alpha$ WSNs. [A Survey on Underwater Wireless Sensor Networks and Applications, Wireless Ad Hoc and Sensor Networks]

3.2 Е甲ар $\boldsymbol{\gamma} \boldsymbol{\gamma} \varepsilon \varepsilon_{\varsigma} \tau \omega v$ UWSNs

 $\alpha v \tau \alpha ́ \theta \alpha \mu \pi о \rho о v ́ \sigma \alpha \nu v \alpha \tau \alpha \xi ı \nu о \mu \eta \theta$ оv́v о́ $\theta \omega \varsigma:$

 тоv Av́

 $\pi \varepsilon \rho ı \beta \alpha ́ \lambda \lambda о \nu \tau \circ \varsigma$.

 $\alpha v \varepsilon ́ \mu \omega v, \beta \varepsilon \lambda \tau \imath \omega \mu \varepsilon ́ v \eta \pi \rho o ́ \gamma v \omega \sigma \eta$ каıюоv́, $\alpha v i ́ \chi v \varepsilon v \sigma \eta ~ \tau \eta \varsigma ~ \kappa \lambda \imath \mu \alpha \tau ı \kappa \eta ́ s ~ \alpha \lambda \lambda \alpha \gamma \eta ́ s, ~ \eta$ $\kappa \alpha \tau \alpha \nu o ́ \eta \sigma \eta \kappa \alpha ı \eta \pi \rho o ́ \beta \lambda \varepsilon \psi \eta \tau \eta \varsigma \varepsilon \pi i ́ \delta \rho \alpha \sigma \eta \varsigma \tau \omega v \alpha v \theta \rho \omega ́ \pi \imath \nu \omega v \delta \rho \alpha \sigma \tau \eta \rho ı \tau \eta ́ \tau \omega v \sigma \tau \alpha$

 $\theta \varepsilon \rho \mu о к \rho \alpha \sigma i ́ \alpha \varsigma ~(t h e r m o c l i n e s), ~ \pi о v ~ \theta \varepsilon \omega \rho о v ́ v \tau \alpha ı ~ \chi \omega ́ \rho о \varsigma ~ \alpha v \alpha \pi \alpha \rho \alpha \gamma \omega \gamma \eta ́ \varsigma ~ \gamma 1 \alpha$

 2011, є $\xi \varepsilon \rho \varepsilon \cup v \dot{v} \tau \tau \alpha \varsigma ~ \tau о ~ A x i a l ~ S e a m o u n t, ~ \varepsilon ́ v \alpha ~ \tau \rho i ́ \mu \eta \nu о ~ \mu \varepsilon \tau \alpha ́ ~ \tau \eta \nu \eta \varphi \alpha ı \sigma \tau \varepsilon ı \alpha к \eta ́ ~ \varepsilon ́ \kappa \rho \eta \xi \eta$

 $\lambda o ́ \gamma \omega \tau \eta \varsigma \pi \rho о к \lambda \eta \tau 1 \kappa \eta ์ \varsigma ~ \varphi v ́ \sigma \eta \varsigma \tau \eta \varsigma$ ．

 каı v $\alpha \cup \alpha ́ \gamma ı \alpha$.

 （SDVs）каı $\delta v ́ \tau \varepsilon \varsigma ~ \mu \varepsilon ~ \beta \alpha ́ \sigma \eta ~ \tau \alpha ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \alpha ~ \pi о v ~ \alpha \nu \imath \chi \nu \varepsilon v ́ о v \tau \alpha ı ~ \alpha \pi о ́ ~ \mu \eta \chi \alpha \nu ı к о и ́ \varsigma, ~$
 $\pi \alpha \rho \alpha \delta о \sigma 1 \alpha \kappa \alpha ́ ~ \sigma v \sigma \tau \eta ́ \mu \alpha \tau \alpha$ $\rho \alpha v \tau \alpha ́ \rho ~ / ~ \sigma o ́ v \alpha \rho, ~ \tau \alpha ~ v \pi о \beta \rho v ́ \chi l \alpha ~ \delta i ́ к \tau v \alpha ~ \alpha ı \sigma Ө \eta \tau \eta ́ \rho \omega v$

 oрvхєía．［A Survey on Underwater Wireless Sensor Networks and Applications］

3．3 Bと́入 $\tau \iota \sigma \tau \eta ~ \tau о \pi о \theta \check{\tau} \tau \eta \sigma \eta ~ \tau \omega \nu ~ U W S N s$

T α UWSNs $\mu \pi о \rho о 勹 ́ v ~ \varepsilon i ́ \tau \varepsilon ~ v \alpha ~ \delta ı \alpha \sigma \pi \alpha \rho \theta o v ́ v ~ \tau v \chi \alpha i ́ \alpha ~ \sigma \varepsilon ~ \mu ı \alpha ~ \pi \varepsilon \rho ı \chi \eta ́ ~ \eta ́ ~ \chi \omega ́ \rho о, ~ \varepsilon i ́ \tau \varepsilon ~ v \alpha ~$
 $\tau \omega \nu$ UWSNs $\varepsilon i ́ v \alpha ı$ оı $\pi \alpha \rho \alpha \kappa \alpha ́ \tau \omega: ~$

 $\mu \varepsilon \tau \alpha ́ \delta о \sigma \eta \varsigma . ~ Г \imath \alpha \tau \eta v \varepsilon \pi \alpha \rho \kappa \eta ́ ~ \kappa \alpha 1 ~ \mu \varepsilon ́ \gamma ı \sigma \tau \eta ~ \delta v v \alpha \tau \eta ́ ~ \kappa \alpha ́ \lambda v \psi \eta ~ \varepsilon v o ́ \varsigma ~ \chi \omega ́ \rho o v, ~ \lambda \alpha \mu \beta \alpha ́ v o v \tau \alpha \varsigma ~ v \pi o ́ \psi \eta$
 то $\pi \omega ́ \varsigma ~ \pi \rho \varepsilon ́ \pi \varepsilon ı ~ v \alpha ~ \tau о \pi о \theta \varepsilon \tau \eta \theta о v ́ v ~ \sigma \tau о ~ \chi \omega ́ \rho о ~ \pi о v ~ \pi \rho \varepsilon ́ \pi \varepsilon ı ~ v \alpha ~ \kappa \alpha \lambda v \varphi \theta \varepsilon i ́ . ~ ' E \tau \sigma ı ~ \varepsilon \pi ı \tau v \gamma \chi \alpha ́ v \varepsilon \tau \alpha ı ~$

 $\sigma \chi \varepsilon \tau \iota \kappa \alpha ́ \lambda i ́ \gamma \omega v \sigma \varepsilon \mu \iota \alpha \alpha ́ \lambda \lambda \eta$ ．［Wireless Ad Hoc and Sensor Networks］

3.4 Oı $\pi \rho о к \lambda \eta ̌ \sigma \varepsilon ı \varsigma ~ \sigma \chi \varepsilon \delta ı \alpha \sigma \mu о v ์ ~ U W S N ~$

 $\alpha \pi \dot{\lambda} \lambda \varepsilon \varepsilon \varepsilon \varsigma ~ \sigma \cup v \delta \varepsilon \sigma \not \mu о ́ \tau \eta \tau \alpha \varsigma$.

 бıáßpшoŋs.
 бף́цатоऽ.
[A Survey Of Underwater Wireless Sensor Networks]

 $\varepsilon \vee ต ́ ~ \tau \alpha ~ W S N ~ \chi \rho \eta \sigma \mu о \pi о 七 о и ́ v ~ \rho \alpha \delta ı к б ́ \mu \alpha \tau \alpha . ~$

 UWSN каı $\tau \eta \varsigma ~ \alpha u \xi ŋ \eta \mu \varepsilon ́ v \eta \varsigma ~ \pi \rho о \sigma \tau \alpha \sigma i ́ \alpha \varsigma ~ \pi о v ~ \alpha \pi \alpha ı \tau \varepsilon i ́ t \alpha l ~ \alpha \pi o ́ ~ \tau о ~ v \lambda ı к o ́ ~$

 то́бо лєрі́л λ окๆ.

 $\pi \rho \omega \tau о к о ́ \lambda \lambda \omega v$ бט́ $\mu \varphi \omega v \alpha \mu \varepsilon \tau \imath \varsigma ~ \alpha \rho \chi \iota \tau \varepsilon \kappa \tau о \nu \iota \kappa \varepsilon ́ \varsigma ~ \tau о v ~ U W S N . ~$

3.6 Тро́лоч $\mu \varepsilon \tau \alpha ́ \delta o \sigma \eta \varsigma ~ \sigma \tau о ~ v \varepsilon \rho o ́ ~$

 η $\alpha \nu \tau \alpha \lambda \lambda \alpha \gamma \eta \eta^{\alpha} \alpha$ о́бт $\alpha \sigma \eta \varsigma ~ \kappa \alpha ı ~ \rho \nu Ө \mu о и ́ ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \omega v ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \pi \rho о ́ \tau v \pi о . ~$

Avaдutıќ́:

А. Акоубтıко́

 Rate (BER).

B. O $\boldsymbol{\pi} \tau \iota \alpha \dot{ }$

Г. Н $\lambda \varepsilon к \tau \rho о \mu \alpha \gamma \nu \eta \tau \iota \kappa \alpha ́$

 єıко́vа, ßívtєо).
[Prospects and Problems of Wireless Communication for Underwater Sensor Networks]

3.7 Н $\lambda \varepsilon \kappa \tau \rho \iota \kappa \varepsilon ́ \varsigma ~ เ \delta เ o ́ \tau \eta \tau \varepsilon \varsigma ~ \tau o v ~ \theta \alpha \lambda \alpha \sigma \sigma ı v o v ́ ~ v \varepsilon \rho o v ́ ~$

 $\mu \circ \vee \tau \varepsilon ́ \lambda o ~ \alpha \pi \omega \lambda \varepsilon ı \omega ́ v ~ \delta ı \alpha \rho о \mu \eta ́ \varsigma ~ \gamma 1 \alpha ~ \tau \alpha ~ Н М ~ к и ́ \mu \alpha \tau \alpha ~ \delta ı \alpha ́ \delta о \sigma \eta \varsigma ~ \sigma \tau о ~ \theta \alpha \lambda \alpha \sigma \sigma ı o ́ ~ v \varepsilon \rho o ́, ~ \alpha v \tau \varepsilon ́ \varsigma ~ o 七 ~$

A. $\mathbf{A} \gamma \omega \gamma \iota \mu$ ó $\tau \eta \tau \alpha$ (Conductivity).

 $\pi \alpha \rho \alpha ́ \delta \varepsilon ı \gamma \mu \alpha$ Ко́ккıvך Өа́ $\lambda \alpha \sigma \sigma \alpha$ ह́ $\chi \varepsilon ı ~ \alpha \gamma \omega \gamma ı о ́ \tau \eta \tau \alpha ~ 8 ~ S / m ~(S i e m e n s / m e t e r), ~ \varepsilon v \omega ́ ~ \alpha v \tau i ́ \theta \varepsilon \tau \alpha ~$

 S/m.

B. $\Delta \mathrm{t} \alpha \pi \varepsilon \rho \alpha \tau o ́ \tau \eta \tau \alpha$ (Permeability).

 $\kappa \varepsilon \nu o ́$ (Free Space), $\mu_{\text {seawater }}=\mu_{\text {freespace }}$.

Г. Е $\pi \iota \tau \rho \varepsilon \pi \tau o ́ \tau \eta \tau \alpha$ (Permittivity).

 $\mu ı \alpha$ є $\pi \iota \varphi \alpha ́ v \varepsilon ı \alpha$ тךऽ одок $\lambda \eta ́ \rho \omega \sigma \eta \varsigma$.

 $\varepsilon \lambda \alpha \tau \eta \rho i ́ o v ~ \eta ́ ~ \tau \eta v ~ \alpha v v ́ \psi \omega \sigma \eta ~ \varepsilon v o ́ s ~ \beta a ́ p o u s . ~$

Material	Static dielectric constant (ε_{r})
Air	1.0006
Styrofoam	1.03
Paraffin	2.1
Teflon	2.1
Plywood	2.1
RT/duroid 5880	2.20
Polyethylene	2.26
RT/duroid 5870	2.35
Glass-reinforced teflon (microfiber)	2.32-2.40
Teflon quartz (woven)	2.47
Glass-reinforced teflon (woven)	2.4-2.62
Cross-linked polystyrene (unreinforced)	2.56
Polyphenelene oxide (PPO)	2.55
Glass-reinforced polystyrene	2.62
Amber	3
Soil (dry)	3
Rubber	3
Plexiglas	3.4
Lucite	3.6
Fused silica	3.78
Nylon (solid)	3.8
Quartz	3.8
Sulfur	4
Bakelite	4.8
Formica	5
Lead glass	6
Mica	6
Beryllium oxide (BeO)	6.8-7.0
Marble	8
Sapphire	$\begin{aligned} & \varepsilon_{x}=\varepsilon_{y}=9.4 \\ & \varepsilon_{z}=11.6 \end{aligned}$
Flint glass	10
Ferrite ($\mathrm{Fe}_{2} \mathrm{O}_{3}$)	12-16
Silicon (Si)	12
Gallium arsenide (GaAs)	13
Ammonia (liquid)	22
Glycerin	50
Water	81
Rutile (TiO_{2})	$\begin{aligned} & \varepsilon_{x}=\varepsilon_{y}=89 \\ & \varepsilon_{z}=173 \end{aligned}$

Eıкóva 11
[An Underwater Wireless Sensor Network with Realistic Radio Frequency Path Loss Model, Advanced Engineering Electromagnetics]

3.8. Моvт $̇ \lambda o ~ \delta ı \alpha ́ \delta o \sigma \eta \varsigma ~ Н М ~ к v ́ \mu \alpha \tau о \varsigma ~$

$$
a=\omega \sqrt{\mu \varepsilon}\left\{\frac{1}{2}\left[\sqrt{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}-1\right]\right\}^{\frac{1}{2}}
$$

$\kappa \alpha 1$ oı $\alpha \pi \omega ́ \lambda \varepsilon ı \varepsilon \varsigma ~ \delta i \alpha ́ \delta o \sigma \eta \varsigma ~ \sigma \tau о ~ \theta \alpha \lambda \alpha \sigma \sigma ı v o ́ ~ v \varepsilon \rho o ́ ~ \sigma \varepsilon ~ d B: ~$
$\alpha_{\mathrm{p}}=10 \log _{10}\left(e^{-2 a d}\right)$.

[Electromagnetic Wave Propagation into Fresh Water]

B. А $\boldsymbol{\pi} 0 \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha$.

Eıкóva 12

 бихขотŋ́тตv.

EıKóva 13
[40]

EıKóva 14

Propagation LOSS 10m

Eikóva 15

Propagation LOSS 20 m

Elкóva 16

$3.9 \Sigma v \mu \pi \varepsilon ́ \rho \alpha \sigma \mu \alpha$

КЕФAএAIO 4 - TO АОГIEMIKO OCTAVE

4.1 To גoүıбнוкó Octave

 $\varepsilon \pi i ́ ~ \tau о ~ \pi \lambda \varepsilon i ́ \sigma \tau о v ~ \sigma v \mu \beta \alpha \tau \eta ́ ~ \mu \varepsilon ~ \tau о ~ M a t l a b . ~ М \pi о р \varepsilon i ́ ~ \varepsilon \pi i ́ \sigma \eta \varsigma ~ v \alpha ~ \chi \rho \eta \sigma ı \mu о \pi о ъ \eta \theta \varepsilon i ́ ~ \omega \varsigma ~ b a t c h-~$ oriented $\gamma \lambda \omega ́ \sigma \sigma \alpha$ ().

 $\sigma \varepsilon \alpha \dot{\alpha} \lambda \lambda \varepsilon \varsigma \gamma \lambda \dot{\sigma} \sigma \sigma \varepsilon \varsigma$.

To GNU Octave ε ívaı $\varepsilon \pi i ́ \sigma \eta \varsigma ~ \varepsilon \lambda \varepsilon v ́ \theta \varepsilon \rho \alpha ~ \alpha v \alpha \delta ı \alpha v \varepsilon \mu \eta \tau \varepsilon ́ o ~ \lambda о \gamma ı \sigma \mu \kappa o ́ . ~ М \pi о р \varepsilon i ́ t \varepsilon ~ v \alpha ~ \tau о ~$

 иоүıбикко́.

To Octave $\gamma \rho \alpha ́ \varphi \tau \eta \kappa \varepsilon \alpha \pi$ о́ $\tau \circ v$ John W. Eaton $\kappa \alpha ı \pi \circ \lambda \lambda o v ́ \varsigma ~ \alpha ́ \lambda \lambda \lambda o v \varsigma . ~$

 $\alpha v \alpha \varphi \varepsilon ́ \rho \varepsilon \tau \alpha \iota ~ \pi \alpha \rho \alpha \kappa \alpha ́ \tau \omega ~ \kappa \alpha l ~ \alpha \nu \alpha \varphi \varepsilon ́ \rho \varepsilon \tau \alpha ı ~ \sigma \tau \eta \nu ~ \varepsilon \xi \alpha \sigma \theta \varepsilon ́ v ı \sigma \eta ~ \gamma ı \alpha ~ \alpha \pi о ́ \sigma \tau \alpha \sigma \eta ~ 2 \mu \varepsilon ́ \tau \rho \omega v . ~$

BIBАIOГРАФІА

Raja Jurdak, "Wireless Ad Hoc and Sensor Networks ", Springer Science+Business Media

Andrea Goldsmith, "Wireless Communications", Cambridge University
Navpreet K., "Comparisons Of Wired And Wireless Networks", Dav University, Jalandhar

Rim Negra, "Wireless Body Area Networks: Applications and technologies", Procedia Computer Science

Milan Šimek, "Bandwidth Efficiency of Wireless Networks of WPAN, WLAN, WMAN and WWAN", Brno University of Technology

Hewlett-Packard: http://www8.hp.com/h30458/ww/en/smb/927462.html
IEC, "Internet of Things: Wireless Sensor Networks", International Electrotechnical Commission

Anil C.B., "A Survey On Various Time Synchronization Techniques In Underwater Sensor Networks", ICETEM, 2014

Sami M. Lasassmeh, "Time Synchronization in Wireless Sensor Networks:
A Survey", University of North Carolina
Peng Xie, "R-MAC: An Energy-Efficient MAC Protocol for Underwater Sensor Networks", University of Connecticut

Raheleh Hashemzehi, "Congestion in Wireless Sensor Networks and Mechanisms for Controling Congestion", IJCSE

Lanbo Liu, "Prospects and Problems of Wireless Communication for Underwater Sensor Networks", Wiley WCMC Special Issue On Underwater Sensor Networks

Bo Dong, "A Survey on Underwater Wireless Sensor Networks and Applications", Texas A\&M University-Corpus Christi

Ghaith Hattab, "An Underwater Wireless Sensor Network with Realistic Radio Frequency Path Loss Model", Hindawi Publishing Corporation, International Journal of Distributed Sensor Networks

Shan Jiang, "Electromagnetic Wave Propagation into Fresh Water", Journal of Electromagnetic Analysis and Applications, 2011

Balanis C., "Advanced Engineering Electromagnetics", Wiley, 1989
Waltenegus D., "Fundamentals of Wireless Sensor Networks", Wiley
GNU Octave: https://www.gnu.org/software/octave/

[^0]: Eıкóva 3

