

TMHMA Λ ОГİTIKH Σ KAI XPHMATOOIKONOMIKH Σ Π П $\Omega H N$ T.E.I. $\Delta \mathrm{YTIKH} \mathrm{\Sigma} \mathrm{E} \Lambda \Lambda \mathrm{A} \Delta \mathrm{O} \Sigma$

ПТҮХІАКН ЕРГАГIA

@EMA

ПАРАГЛГНЕ ТОY КРҮПТОNOMIГMATO』»

Λ OHГ ПРО \triangle POMO Σ
$\Sigma \mathrm{IKO} \Lambda \mathrm{A} \Sigma$ ANTRNIO Σ

ЕПIB Λ ЕПЛN KAఆНГНТНГ: ZAXOYPH Σ ПAPI Σ

EYXAPIETIEE

ПЕРІАНЧН

 $\omega \varsigma ~ v \varepsilon ́ o ~ \mu \varepsilon ́ \sigma o ~ \alpha v \tau \alpha \lambda \lambda \alpha \gamma \eta ́ s, ~ \kappa \alpha \theta \omega ́ ̧ ~ \kappa \alpha l ~ \varepsilon ́ v \alpha ~ \kappa \alpha ı v o \tau o ́ \mu o ~ \sigma v ́ \sigma \tau \eta \mu \alpha ~ \pi \lambda \eta \rho \omega \mu \omega ́ v . ~ \Sigma \tau о ~ \pi \lambda \alpha i ́ \sigma ı o ~$
 крилто⿱оні́б $\mu \alpha \tau о \varsigma$.

 $\delta \rho \alpha \sigma \tau \eta \rho เ o ́ \tau \eta \tau \alpha$.
 бvvaג $\lambda \alpha \gamma \varepsilon ́ \varsigma$

ПINAKAE ПEPIEXOMEN Ω N

EYXAPIटTIE 2
ПЕРІЛНЧН 3
EIइAГЛГН 7
10 КЕФА＾АІО：H ENNOIA KAI OI ЛEITOYPГIE ПへАГТІКО ХРНМА 8
1．1 H ह́vvola tou रpท́भגто̧ 8
1．2 Oı $\lambda \varepsilon เ \tau о \cup \rho ү і ́ ६ \varsigma ~ t o u ~ \chi \rho ท ́ \mu \alpha т о \varsigma ~$ 9
1．3 То плабтько́ хрท́ $\mu \alpha$ 9
КЕФА＾AIO 2° ：H ENNOIA TOY КРҮПTONOMIГMATO乏 14
2．1＇Evvoıa－opıouós 14
2．2 H Хрпоцно́тпта $\tau \omega \vee$ криттоvо $\mu \iota \sigma \mu \dot{\tau} \tau \omega v$ 15
2.3 Н $\lambda \varepsilon ı \tau о \cup \rho ү i \alpha ~ \tau \omega v ~ к \rho и \pi \tau о v o \mu ı \sigma \mu \alpha ́ \tau \omega v ~$ 17
2．4 Zףтŋ́ $\mu \alpha \tau \alpha \alpha \sigma \phi \alpha \dot{\lambda} \varepsilon เ \alpha \varsigma ~ к \alpha \iota ~ к i v \delta u v o เ ~ \alpha \pi o ́ ~ \tau \eta ~ \chi \rho \eta ́ \sigma \eta ~ к \rho u \pi \tau о v o \mu ı \sigma \mu \alpha ́ \tau \omega v ~$ 20
КЕФА＾AIO 3° ：H $\triangle I E Y P Y N \Sigma H ~ T H \Sigma ~ X P H \Sigma H \Sigma ~ T \Omega N ~ К Р Ү П T O N O M I \Sigma M A T \Omega N ~ K A I ~ H ~ T E X N O \wedge O Г I A ~$ BLOCKCHAIN 23
 23
 24
 27
 30
 30
 41
 42
 49
 50
4．5．1 Ката́бтабף танєเакои́ лроӥло入оүเбнои́ 52
4．5．2 Проӥпо入оүьоно́я лараүшүи́я 53
 54
 P．O．S 56
5．1 Tı عívaı to Point of Sale（P．O．S）； 56
5．2 H $\lambda \varepsilon \iota \tau o u p p i \alpha \tau \omega v$ P．O．S 57
5．3 H хрท́бף т ωv P．O．S бто 入ıavıко́ єцто́рıо 58
5.4 H $\chi \rho \eta \sigma \iota \mu o ́ \tau \eta \tau \alpha$ к $\alpha \iota \eta \alpha \sigma \phi \alpha \dot{\lambda} \varepsilon \iota \alpha \tau \omega v \sigma u v \alpha \lambda \lambda \alpha ү \omega ́ v \mu \varepsilon \tau \eta \chi \rho \eta \dot{\eta} \eta \tau \omega v$ P．O．S 61
 63
КЕФА＾АІО 6° ：ПАРАОІКОNOMIA，ФОРОДІАФҮГН КАІ КРҮПТОNOMIГМАТА 66
 66
6．2 H ह́vvola tఇऽ фороסıафuүท́s． 69
6．4 Aıtiદৎ tワऽ форобıафиүท́я 71
 71
 73
 крилтоvoнíб $\mu \alpha \tau \alpha$ 77
 79
6．7．2 Еாı入оүท́ $\mu \varepsilon$ Өóסou ع入દ́үхоu 80
 81
6．7．4 $\Sigma \tau \alpha ́ \delta ı \alpha ~ \varepsilon \lambda \varepsilon ́ \gamma \chi o u ~$ 84
6．7．5 H ठıаסıкабía tou ع入દ́үХоu 85
6．7．6＇Evtuпа проя форо入оүои́ $\mu \varepsilon$ оо 87
ГYМПЕРАГМАТА． 90
ВІВЛІОГРАФІА． 91

ЕІІАГЛГН

 عíval $\varepsilon \pi i ́ \sigma \eta \varsigma ~ \gamma v \omega \sigma \tau o ́ \omega \varsigma ~ \psi \eta \varphi \iota \alpha \kappa o ́ ~ \chi \rho \eta ́ \mu \alpha ~ к \alpha ı ~ c y b e r c a s h . ~$

 аvтท́s.

10 КЕФА^AIO: H ENNOIA KAI OI ムEITOYPГIE $\Sigma^{\text {TO }}$ ХРНМАТОГ. МЕЛЕТН ПЕРІПТЛГНГ: ТО ПЛАЕТІКО XPHMA

1.1 H ε ह́vot α тov $\chi \rho \eta ́ \mu \alpha \tau о \varsigma$

 $\chi \omega \rho i ́ \zeta \varepsilon \tau \alpha ı \sigma \varepsilon$ ठv́o $\pi \rho \alpha ́ \xi \varepsilon เ \varsigma:$

 $\chi \rho \eta \sigma \mu о \pi о$ о́ $\sigma \dot{\varsigma} \varsigma ~ \tau о \cup \varsigma ~ \eta ́ \tau \alpha \nu^{1}$:

1. Н $\mu \varepsilon \gamma \alpha ́ \lambda \eta ~ \alpha క ̌ i ́ \alpha ~ \tau o v ̧ ~ \sigma \varepsilon ~ \mu \kappa к о ́ ~ o ́ \gamma к о ~ \mu \varepsilon ~ \alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha ~ v \alpha ~ \mu \varepsilon \tau \alpha \varphi \varepsilon ́ \rho о v \tau \alpha ı ~ к \alpha ı ~ v \alpha ~$甲טда́ббоvтаı عט́кода.
2. $\mathrm{H} \pi \varepsilon \rho \stackrel{\rho}{ } \quad \sigma \mu \varepsilon ́ v \eta \pi 0 \sigma o ́ \tau \eta \tau \alpha \sigma \tau \eta \varphi v ́ \sigma \eta$.
3. H $\delta v \sigma \kappa о \lambda i ́ \alpha ~ \alpha \lambda \lambda$ oí $\omega \sigma \eta \varsigma$ ($\delta \eta \lambda \alpha \delta \dot{\eta}$ vó $0 \varepsilon v \sigma \eta ́ \varsigma ~ \tau o u \varsigma) . ~$

[^0]

 $\mu \varepsilon ́ \sigma o ~ \sigma v v \alpha \lambda \lambda \alpha \gamma \eta ́ s ~-~ \varepsilon ́ v \alpha ~ \mu \varepsilon ́ \sigma o ~ \pi \lambda \eta \rho \omega \mu \eta ́ \varsigma ~ \mu \varepsilon ~ \alpha \xi ̌ i ́ \alpha ~ \tau \eta \nu ~ о \pi о i ́ \alpha ~ o ́ \lambda о 1 ~ \varepsilon \mu \pi ı \sigma \tau \varepsilon v ́ o v \tau \alpha ı . ~ E i ́ v \alpha ı ~$

 vо $\mu \imath \sigma \mu \tau \iota \kappa \dot{\alpha} ~ \mu \varepsilon \gamma \dot{\varepsilon} \theta \eta$. Oı $\varepsilon \xi \varepsilon \lambda i \xi \varepsilon ı \varsigma ~ \sigma \tau \alpha ~ \mu \varepsilon \gamma \varepsilon ́ \theta \eta ~ \alpha v \tau \alpha ́ ~ \varphi \alpha v \varepsilon \rho ต ́ v o v v ~ \chi \rho \eta ́ \sigma \mu \varepsilon \varsigma ~$

 к人l $\alpha v \alpha \lambda u ́ \sigma \varepsilon \omega v^{2}$.

1.3 То $\pi \lambda \alpha \sigma \tau \iota \kappa o ́ ~ \chi \rho \eta ́ \mu \alpha$

[^1]

 $\mu \varepsilon \tau \eta \nu \varepsilon \pi \downarrow \chi \varepsilon i ́ p \eta \sigma \eta ́ ~ \tau 0 \cup \varsigma ~ \alpha \varphi о v ́ ~ \tau \alpha ~ о \varphi \varepsilon ́ \lambda \eta ~ \varepsilon i ́ v \alpha ı ~ \pi о \lambda \lambda \alpha ́ ~ \kappa \alpha l ~ к ט \rho i ́ \omega \varsigma ~ \sigma \varepsilon ~ \alpha v \tau \eta ~ \tau \eta ~ \pi \varepsilon \rho i ́ o \delta o ~$

 oı $\varepsilon \pi \downarrow \chi \varepsilon เ \rho \eta ́ \sigma \varepsilon ı \varsigma . ~ П \rho о \sigma \varphi \varepsilon ́ \rho \varepsilon ı ~ \tau \eta ~ \delta v v \alpha \tau o ́ \tau \eta \tau \alpha ~ \sigma \tau о v ~ к \alpha \tau \alpha v \alpha \lambda \omega \tau \eta ́ ~ v \alpha ~ \beta \rho \varepsilon ı ~ \varepsilon v ́ к о \lambda \alpha ~ к \alpha ı ~$

 $\delta \iota \sigma \varepsilon \kappa \alpha \tau о \mu \mu v ́ \rho ı \alpha$.

[^2] $\pi \rho о \sigma \omega \pi \imath \kappa о$ к. $\alpha .$.

- Av $\tau \alpha \lambda \lambda \alpha \gamma \eta ́ \pi \lambda \eta \rho о \varphi о \rho ı \omega ́ v / ~ П \rho о \beta о \lambda \eta ́$
- Параүүغ入ía
- Паро́סобך $\pi \rho о$ óvтоя
- $\Pi \lambda \eta \rho \omega \mu \eta ́$

- E

 $\kappa \alpha ́ \rho \tau \alpha, \omega \varsigma ~ \mu \varepsilon ́ \sigma o ~ \pi \lambda \eta \rho \omega \mu \eta ́ \varsigma, ~ к \alpha \tau \alpha \rho \gamma \varepsilon i ́ ~ \varepsilon \pi i ́ \sigma \eta \varsigma ~ \tau \eta \nu ~ \alpha \nu \alpha ́ \gamma \kappa \eta ~ v ́ \pi \alpha \rho \xi \eta \varsigma ~ \mu \varepsilon \tau \rho \eta \tau \omega ́ v ~ \eta ́$
 $\mu \varepsilon \tau \alpha \varphi \varepsilon ́ \rho о \vee \tau \alpha ı$ д́ $\mu \varepsilon \sigma \alpha$ ало́ то $\lambda о \gamma \alpha \rho ı \alpha \sigma \mu o ́ ~ \tau \eta \varsigma ~ \tau \rho \alpha ́ \pi \varepsilon \zeta \zeta \alpha \varsigma ~ \tau о v ~ \pi \varepsilon \lambda \alpha ́ \tau \eta ~ \sigma \tau о \nu ~ \varepsilon к \alpha ́ \sigma \tau о \tau \varepsilon ~$ $\varepsilon \pi \chi \chi \varepsilon \varphi \eta \mu \alpha \tau \kappa{ }^{5}$.

 $\mu \eta{ }^{\prime} \alpha$.

[^3]

 vлєрпиєрía̧.
 тov Internet Banking. T $\alpha \tau \varepsilon \lambda \varepsilon \cup \tau \alpha i ́ \alpha ~ \chi \rho o ́ v ı \alpha ~ \varepsilon ́ \chi o v v ~ \gamma i ́ v \varepsilon ı ~ \pi о \lambda \lambda \varepsilon ́ \varsigma ~ \alpha \lambda \lambda \alpha \gamma \varepsilon ́ \varsigma ~ \sigma \tau о \nu ~ \tau \rho o ́ \pi о ~ \mu \varepsilon ~$

 $\alpha \rho \kappa \varepsilon \tau o ́ ~ \kappa o ́ \sigma \tau о \varsigma, ~ \delta i ́ v o v \tau \alpha \varsigma ~ \sigma \tau о \nu ~ \pi \varepsilon \lambda \alpha ́ \tau \eta ~ \tau \eta \nu ~ \varepsilon ט \chi \varepsilon ́ \rho \varepsilon ı \alpha ~ \tau \eta \varsigma ~ \delta ı \alpha \chi \varepsilon i ́ p ı \sigma \eta \varsigma ~ \tau о v ~ \lambda о \gamma \alpha \rho ı \alpha \sigma \mu о v ́ ~$
 $\kappa \alpha ı$ ovo $\mu \alpha ́ \zeta \varepsilon \tau \alpha \iota$ internet banking. «M ε тov ópo $\lambda o \not \approx \pi o ́ v$ internet banking $\varepsilon v v o o v ́ \mu \varepsilon \tau \eta$

 $\lambda о \gamma \alpha \rho ı \alpha \sigma \mu \dot{v}$ о оү $\alpha v ı \sigma \mu \dot{v}$ коเv́s $\omega \varphi \varepsilon \lambda \varepsilon i ́ \alpha \varsigma ~(~ \Delta E H, ~ O T E, ~ к . \alpha),. ~ \pi \lambda \eta \rho \omega \mu \eta ́ ~$

[^4]

[^5]
КЕФАМАIO 2º: H ENNOIA TOY KPYПTONOMIEMATO乏

2.1 Evvoıа-opıбиós

 $\sigma \tau \eta ์ \rho ı \xi \eta ~ \tau о v ~ к р ข \pi \tau о v о \mu i ́ \sigma \mu \alpha \tau о \varsigma ~ \varepsilon \xi \alpha к о \lambda о v \theta \varepsilon i ́ ~ v \alpha ~ к \alpha \theta о р i \zeta \varepsilon \tau \alpha ı ~ к \alpha ı ~ v \alpha ~ \alpha v \alpha \pi \tau v ́ \sigma \sigma \varepsilon \tau \alpha ı . ~ O ı ~$

 $\varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma \tau \circ v ์ v ~ \tau \alpha ~ \beta \eta ́ \mu \alpha \tau \alpha ~ \kappa \alpha ı ~ \tau ı \varsigma ~ \delta \alpha \pi \alpha ́ v \varepsilon \varsigma ~ \pi о v ~ \sigma ט v \delta \varepsilon ́ o v \tau \alpha ı ~ \mu \varepsilon ~ \tau \eta \nu ~ v \pi о \delta о \mu \eta ́, ~ \sigma \varepsilon ~$

 $\chi \rho \eta \sigma \mu о \pi о \iota \omega ́ v \tau \alpha \varsigma \alpha v \tau \alpha ́ \omega \varsigma$ vó $\mu \iota \sigma \mu \alpha \mu \varepsilon \tau \alpha \varphi о \rho \alpha ́ \varsigma$.

[^6]

 $\alpha v \alpha \gamma v \omega ́ \rho ı \sigma \eta ~ \tau \omega v ~ \pi \varepsilon \lambda \alpha \tau \omega ́ v ~ \mu \alpha \zeta ́ i ́ ~ \mu \varepsilon ~ \tau o v ~ к i ́ v \delta v v o, ~ \pi \varepsilon \rho ı \rho i ́ ̧ o v v ~ \tau \eta v ~ \alpha \pi о \delta о \chi \eta ́ ~ \tau \omega v$

2.2 H $\chi \rho \eta \sigma \iota \mu \dot{\tau} \tau \eta \tau \alpha \tau \omega \nu$ к $\rho \cup \pi \tau о \nu о \mu \tau \sigma \mu \alpha ́ \tau \omega \nu$

 $\kappa \alpha ı ~ \tau \eta \varsigma ~ к \varepsilon \rho \delta о б к о \pi i ́ \alpha \varsigma ~ \varepsilon i ́ v \alpha ı ~ o ́ \tau ı ~ \tau \alpha ~ \pi \varepsilon \rho ı \sigma \sigma o ́ \tau \varepsilon \rho \alpha ~ \alpha \pi о к \varepsilon v \tau \rho \omega \mu \varepsilon ́ v \alpha ~ к \rho v \pi \tau о v о \mu i ́ \sigma \mu \alpha \tau \alpha$,

1. Мєт $\alpha \varphi \rho \rho \varepsilon ́ \varsigma ~ \chi \rho \eta \mu \alpha ́ \tau \omega \nu ~ \mu \varepsilon ~ \chi \alpha \mu \eta \lambda o ́ ~ к о ́ \sigma \tau о \varsigma ~ \sigma v v \alpha \lambda \lambda \alpha \gamma \eta ́ \varsigma ~$

 $\delta ı \alpha \sigma v v o \rho ı \alpha \kappa \eta ́ \sigma v v \alpha \lambda \lambda \alpha \gamma \eta$ ๆ́.

[^7] AA $\triangle \mathrm{E} \pi \rho о \chi \omega \rho \varepsilon i ́ ~ \alpha v \tau o ́ \mu \alpha \tau \alpha ~ \sigma \varepsilon ~ к \alpha \tau \alpha \sigma \chi \varepsilon ́ \sigma \varepsilon ı \varsigma ~ \tau \rho \alpha \pi \varepsilon \zeta ı \kappa ळ ́ v ~ \lambda о \gamma \alpha \rho ı \alpha \sigma \mu \omega ́ v ~ \gamma ı \alpha ~ \chi \rho \varepsilon ́ \eta ~ \tau \omega v ~$

 $\Omega \varsigma ~ \varepsilon \kappa ~ \tau о v ́ т о v, ~ к \alpha v \varepsilon ́ v \alpha ~ \pi \rho о \sigma \omega \pi ィ к о ́ ~ \pi о р т о ф о ́ \lambda ı ~ \delta \varepsilon v ~ \mu \pi о \rho \varepsilon i ́ ~ \pi о \tau \varepsilon ́ ~ v \alpha ~ \pi \alpha \gamma ต ́ \sigma \varepsilon ı ~ \alpha \pi о ́ ~ \tau ı \varsigma ~$

Н $\varepsilon \mu \varphi \alpha ́ v i \sigma \eta ~ \tau \eta \varsigma ~ \sigma v \gamma \kappa \varepsilon ́ v \tau \rho \omega \sigma \eta \varsigma ~ \chi \rho \eta \mu \alpha ́ \tau \omega v ~ \mu \varepsilon ́ \sigma \omega ~ к \rho v \pi \tau о v о \mu ı \sigma \mu \alpha ́ \tau \omega v ~ \varepsilon ́ \chi \varepsilon ı ~ \varepsilon \pi ı \tau \rho \varepsilon ́ \psi \varepsilon ı ~ \sigma \varepsilon ~$

 $\pi \rho ต ́ \tau 0 \cup \varsigma ~ v \pi о \sigma \tau \eta \rho ı \kappa \tau \varepsilon ́ \varsigma ~ \tau о v ~ \varepsilon ́ \rho \gamma о v, ~ \sigma \varepsilon ~ \alpha \nu \tau \alpha ́ \lambda \lambda \lambda \gamma \gamma \mu \alpha ~ \gamma 1 \alpha ~ \kappa \alpha \theta ı \varepsilon \rho \omega \mu \varepsilon ́ v \varepsilon \varsigma$ крилтобvхvóтๆтєऽ о́ $\pi \omega \varsigma$ Bitcoin (BTC) к $\tau \lambda$.

4. Н $\pi \rho \alpha \gamma \mu \alpha \tau о \pi о \dot{\eta} \sigma \eta ~ \delta \delta \omega \tau \iota \kappa \omega ́ v ~ \sigma \nu v \alpha \lambda \lambda \alpha \gamma \omega ́ v$

 $\delta ı \alpha \delta \kappa \alpha \sigma i ́ \varepsilon \varsigma$.
5. ПגךрФиغ́я $\gamma 1 \alpha \tau \eta \delta \eta \mu \circ \sigma i ́ \varepsilon v \sigma \eta \pi \varepsilon \rho \iota \varepsilon \chi \circ \mu \varepsilon ́ v \circ v \sigma \varepsilon$ blogs / sites $\kappa \tau \lambda$

[^8]

 $\pi \lambda \varepsilon ́ o v ~ \sigma \varepsilon ~ \theta \varepsilon ́ \sigma \eta ~ v \alpha ~ \mu \varepsilon \tau \alpha \tau \rho \varepsilon ́ ч о v v ~ \tau \alpha ~ к \rho v \pi \tau о v о \mu i ́ \sigma \mu \alpha \tau \alpha ~ \sigma \varepsilon ~ \tau о \pi ィ к о ́ ~ v о ́ \mu ı \sigma \mu \alpha ~ \sigma \tau ı \varsigma ~$ $\pi \varepsilon \rho \iota \sigma \sigma o ́ \tau \varepsilon \rho \varepsilon \varsigma \mu \varepsilon \gamma \dot{\lambda} \lambda \varepsilon \varsigma \pi o ́ \lambda \varepsilon 1 \varsigma \sigma \varepsilon$ ó $\lambda 0$ тоv ко́б $\mu{ }^{11}$.

[^9] чпүікка́ vо $\boldsymbol{\prime} \sigma \mu \alpha \tau \alpha$.

 blockchain, $\kappa \alpha \imath \kappa \alpha ́ \theta \varepsilon \delta ı \alpha \delta ı \kappa \alpha \sigma i ́ \alpha ~ \varepsilon \xi \alpha \sigma \varphi \alpha \lambda i \zeta ̧ \tau \alpha \Omega \mu \varepsilon \kappa \rho v \pi \tau о \gamma \rho \alpha \varphi i ́ \alpha^{12}$.
 к人́คта. Kaı $\sigma \tau \iota \varsigma ~ \delta v ́ o ~ \pi \varepsilon \rho ı \tau \tau \omega ́ \sigma \varepsilon ı \varsigma, ~ \varepsilon ́ v \alpha ~ \pi о \lambda ט ́ \pi \lambda о к о ~ \sigma v ́ \sigma \tau \eta \mu \alpha ~ \pi о v ~ \varepsilon к \delta i ́ \delta \varepsilon ı ~ \sigma v v \alpha \lambda \lambda \alpha \gamma \varepsilon ́ \varsigma ~$
 к $\alpha \iota ~ v \alpha ~ \lambda \alpha \mu \beta \alpha ́ v o v v ~ v o ́ \mu ı \sigma \mu \alpha ~ \eta \lambda \varepsilon к \tau \rho о v ı к \alpha ́ . ~ О \mu о i ́ \omega \varsigma, ~ о ́ \pi \omega \varsigma ~ \sigma v \mu \beta \alpha i ́ v \varepsilon ı ~ к \alpha ı ~ \mu \varepsilon ~ \tau ı \varsigma ~$

 $\chi \rho \eta ́ \mu \alpha \tau \alpha$, $\alpha \pi \alpha ı \varepsilon \varepsilon i ́ t \alpha ı ~ \eta ~ \gamma \nu \omega ́ \sigma \eta ~ \varepsilon \vee o ́ s ~ \kappa \omega \delta ı к о v ́ ~ \pi \rho o ́ \sigma \beta \alpha \sigma \eta \varsigma ~ \pi о v ~ \sigma \chi \varepsilon \tau i ́ \zeta \varepsilon \tau \alpha ı ~ \mu \varepsilon ~ \tau о v ~$ λ оүарı $\alpha \sigma \mu$ ó. Oı $\sigma v v \alpha \lambda \lambda \alpha \gamma \varepsilon ́ \varsigma ~ \pi о v ~ \pi \rho \alpha \gamma \mu \alpha \tau о \pi о ю v ́ v \tau \alpha ı ~ \mu \varepsilon \tau \alpha \xi ́ v ́ ~ \tau \omega \nu ~ \chi \rho \eta \sigma \tau \dot{v ~ \varepsilon i ́ v \alpha ı ~}$

[^10]
 $\kappa \alpha \tau \varepsilon ́ \chi \varepsilon ı ~ \tau о ~ \pi о \sigma о ́ ~ к \rho v \pi \tau о \gamma \rho \alpha ́ \varphi \eta \sigma \eta \varsigma ~ \pi о v ~ \sigma v v \delta \varepsilon ́ \varepsilon \tau \alpha ı ~ \mu \varepsilon ~ \alpha v \tau \alpha ́ ~ \tau \alpha ~ \kappa \lambda \varepsilon \iota \delta<\alpha ́ . ~$

To blockchain ε ívaı $\sigma \alpha \nu$ éva $\alpha \pi о к \varepsilon \nu \tau \rho \omega \mu \varepsilon ́ v o ~ \tau \rho \alpha \pi \varepsilon \zeta ı к o ́ ~ \beta \imath \beta \lambda i ́ o, ~ к \alpha ı ~ \sigma \tau ı \zeta ~ \delta v ́ o ~$

 Ká $\theta \varepsilon \mu \pi \lambda$ ок $\sigma v v \delta \varepsilon ́ \varepsilon \tau \alpha ı ~ \mu \varepsilon ~ \tau \alpha ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \alpha ~ \tau о v ~ \tau \varepsilon \lambda \varepsilon v \tau \alpha i ́ o v ~ \mu \pi \lambda о \kappa ~ \mu \varepsilon ́ \sigma \omega ~ \mu о v o ́ \delta \rho о \mu \omega v ~$
 $\kappa \alpha \tau \alpha \sigma \tau \eta ์ \sigma 0 v \nu \pi \rho \lambda v ́ ~ \delta v ́ \sigma \kappa о \lambda \eta ~ \tau \eta \nu \pi \alpha \rho \alpha \beta i ́ \alpha \sigma \eta ~ \tau o v ~ b l o c k c h a i n ~{ }^{13}$.

 $\mu \pi \lambda$ ок $\sigma \tau$ blockchain $\chi \rho \eta \sigma \mu о \pi о ю и ́ v ~ \pi \alpha \rho о ́ \mu о ю ~ \tau о ́ т о ~ к \rho и л \tau о \gamma \rho \alpha \varphi i ́ \alpha \varsigma . ~ E v ~ \tau \omega ~ \mu \varepsilon \tau \alpha \xi и ́, ~$

[^11]

 тov ${ }^{14}$.

криттоขо μ เб $\mu \alpha ́ \tau \omega \nu$

 $\varepsilon \mu \pi о \delta i ́ \zeta o v \nu ~ \tau \eta \nu \pi \rho o ́ o \delta o ~ \tau \eta \varsigma ~ а \gamma о \rho \alpha ́ \varsigma . ~$

Eívaı $\alpha \lambda \eta ́ \theta \varepsilon ı \alpha$ ó $\tau ı ~ \eta ~ \varepsilon \mu \varphi \alpha ́ v ı \sigma \eta ~ \tau \omega \nu ~ к \rho \cup \pi \tau о v о \mu ı \sigma \mu \alpha ́ \tau \omega v ~ \varepsilon ́ \chi \varepsilon ı ~ \varepsilon к \delta \eta \mu о к р \alpha \tau i ́ \sigma \varepsilon ı ~ \pi о \lambda \lambda \varepsilon ́ \varsigma ~$

 о $\chi \rho \eta ́ \sigma \tau \eta \varsigma . ~ E v ต ́ ~ \eta ~ к \alpha \tau \eta \gamma о \rho i ́ \alpha ~ \tau \omega v ~ к \rho v \pi \tau о v о \mu ı \mu \mu \alpha ́ \tau \omega v ~ \gamma \varepsilon v ı \alpha \alpha ́ ~ \delta \varepsilon v ~ \sigma v v \delta \varepsilon ́ \varepsilon \tau \alpha ı ~ \mu \varepsilon ~ \tau \eta v ~$
 $\mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \delta \eta \mu ı v \rho \gamma \eta ́ \sigma \varepsilon ı ~ \pi \alpha v ı к o ́ ~ \sigma \varepsilon ~ о \lambda о ́ к \lambda \eta \rho о ~ \tau о ~ \sigma ט ́ \sigma \tau \eta \mu \alpha$.
2. T $\alpha \kappa \rho \cup \pi \tau о v о \mu i ́ \sigma \mu \alpha \tau \alpha$ عív $\alpha \mathrm{l}$ д́v $\lambda \alpha, \mu \eta$ $\rho \varepsilon v \sigma \tau о \pi о \emptyset ́ \sigma \not \mu \alpha \kappa \alpha l ~ \alpha v \alpha \sigma \varphi \dot{\alpha} \lambda ı \sigma \tau \alpha$

[^12]

3. Н عи́кодŋ $\pi \alpha \rho \alpha \pi \lambda \eta \rho о \varphi o ́ \rho \eta \sigma \eta$

Паро́ $\tau \eta v \alpha \dot{\alpha} \nu \lambda \eta$ каı $\alpha o ́ \rho \alpha \tau \eta ~ \varphi v ́ \sigma \eta ~ \tau \omega v ~ к \rho v \pi \tau о v о \mu ı \sigma \mu \alpha ́ \tau \omega v ~ \varepsilon ́ v \alpha ~ \alpha \pi o ́ ~ \tau \alpha ~ \mu \varepsilon \gamma \alpha \lambda v ́ \tau \varepsilon \rho \alpha ~$

5. Oı кívঠvvoı đто $\delta 1 \alpha \delta$ íктvo

[^13]'O $\pi \omega \varsigma ~ \sigma v \mu \beta \alpha i ́ v \varepsilon ı ~ \mu \varepsilon ~ \tau \iota \varsigma ~ \alpha \pi \varepsilon \imath \lambda \varepsilon ́ \varsigma ~ \sigma \tau о ~ \delta ı \alpha \delta i ́ к \tau v o ~ \varepsilon i ́ v \alpha ı ~ \delta \varepsilon \delta o \mu \varepsilon ́ v o ~ o ́ \tau ı ~ \tau о ~ к р v \pi \tau о v o ́ ~ \mu ı \sigma \mu \alpha ~$

 $\eta \lambda \varepsilon \kappa \tau \rho о v ⿺ \kappa \alpha ́ ~ \tau o v \varsigma ~ \chi \rho \eta ́ \mu \alpha \tau \alpha ~ \varepsilon i ́ v \alpha l ~ \alpha \pi o ́ \lambda \nu \tau \alpha ~ \alpha \sigma \varphi \alpha \lambda \eta ́ . ~$

 кıvঠช́vตv тךร $\alpha \gamma о \rho \alpha ́ \varsigma ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \sigma v \mu \beta \alpha ́ \lambda \varepsilon ı ~ \sigma \tau \eta ~ \beta \varepsilon \lambda \tau i ́ \omega \sigma \eta ~ \tau \omega v ~ \mu \alpha к \rho о \pi \rho o ́ \theta \varepsilon \sigma \mu \omega \nu$
 $\alpha \pi$ ó $\tau 0 v \varsigma \kappa$ кıvঠ́vovs $\pi 0 v$ v $\pi \alpha ́ \rho \chi \circ v v ~ \sigma \tau \eta v ~ \alpha \gamma o \rho \alpha ́ ~ \alpha v \tau \eta ́ . ~$

[^14]
КЕФА^AIO 3: H $\Delta I E Y P Y N \Sigma H ~ T H \Sigma ~ X P H \Sigma H \Sigma ~ T \Omega N ~$ КРҮПTONOMIEMAT』N KAI H TEXNO^OГIA BLOCKCHAIN

Ta $\tau \varepsilon \lambda \varepsilon v \tau \alpha i ́ \alpha ~ \chi \rho o ́ v ı \alpha ~ \eta ~ \varepsilon ́ v v o l \alpha ~ \tau o v ~ B i t c o i n ~ \varepsilon i ́ v \alpha ı ~ o \lambda o \varepsilon ́ v \alpha ~ к \alpha ı ~ \pi \varepsilon \rho ı \sigma \sigma o ́ \tau \varepsilon \rho o ~ \delta ı \alpha \delta \varepsilon \delta o \mu \varepsilon ́ v \eta ~$

 $\tau \varepsilon \chi \vee 0 \lambda 0 \gamma i ́ \alpha$ blockchain ${ }^{17}$.

[^15]

 крилтоүраф $\mu \varepsilon ́ v \eta ~ \beta \alpha ́ \sigma \eta ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \omega v ~ \sigma v v \alpha \lambda \lambda \alpha \gamma ต ́ v ~(\eta \mu \varepsilon \rho о \lambda o ́ \gamma ю), ~ \pi о v ~ \mu о ı \rho \alpha ́ \zeta \varepsilon \tau \alpha ı ~$
 каı $\alpha \pi$ о́ тоv̧ $\chi \rho \eta ́ \sigma \tau \varepsilon \varsigma . ~ Н ~ \delta ı \alpha \varphi о \rho \alpha ́ ~ \mu \varepsilon \tau \alpha \xi v ́ ~ \tau о v ~ v \varphi \imath \sigma \tau \alpha ́ \mu \varepsilon v o v ~ \sigma v \sigma \tau \eta ́ \mu \alpha \tau о \varsigma ~ к \alpha ı ~ \tau \eta \varsigma ~$

3.2 0ı λ о́үoı тך̧ $\delta เ \varepsilon u ́ \rho u v \sigma \eta \varsigma ~ \tau \eta \varsigma ~ \chi \rho \eta ́ \sigma \eta \varsigma ~ \tau \omega \nu ~$ кроптоขо $\boldsymbol{\kappa} \sigma \mu \alpha ́ \tau \omega \nu$

 $\pi \alpha \rho \alpha \delta о \sigma \iota \alpha \kappa \varepsilon ́ \varsigma ~ \tau \rho \alpha \pi \varepsilon \zeta \iota \kappa \varepsilon ́ \varsigma ~ v \pi \eta \rho \varepsilon \sigma i ́ \varepsilon \varsigma ~ \gamma 1 \alpha$ тоטऽ $\pi \alpha \rho \alpha \kappa \alpha ́ \tau \omega ~ \lambda o ́ \gamma o v \varsigma{ }^{18}$:

[^16]$\mu \varepsilon ́ \lambda o s ~ \tau o v ~ \delta ı \kappa \tau ט ́ o v ~ b l o c k c h a i n ~ \mu \varepsilon ~ \varepsilon ́ v \alpha v ~ v \pi о \lambda о \gamma ı \tau \tau \eta ́ . ~ T o ́ \tau \varepsilon ~ \varepsilon \xi ̧ \alpha \rho \tau \alpha ́ \tau \alpha ı ~ \alpha \pi o ́ ~ \tau ı \varsigma ~$

 $\gamma \nu \omega \sigma$ ó $\omega \varsigma$ blockchain каı $\lambda \alpha \mu \beta \alpha ́ v \varepsilon ı ~ b i t c o i n s ~ \omega \varsigma ~ \pi \lambda \eta \rho \omega \mu \eta ́ ~ \gamma ı \alpha ~ \tau ı \varsigma ~ v \pi \eta \rho \varepsilon \sigma i ́ \varepsilon \varsigma ~ \alpha v \tau \varepsilon ́ \varsigma . ~$

 $\tau \alpha \mu \pi \lambda$ ок $\alpha \pi о Ө \eta \kappa \varepsilon v ́ o v \tau \alpha ı ~ \mu \varepsilon \tau \alpha ́ ~ \tau о ~ \varepsilon ́ v \alpha ~ \mu \varepsilon ~ \tau о ~ \alpha ́ \lambda \lambda о ~ к \alpha \tau \alpha ́ ~ \chi \rho о v о \lambda о \gamma ı к ŋ ́ ~ \sigma \varepsilon ı \rho \alpha ́ ~ к \alpha ı ~ v \alpha ~$

 $\tau \omega v \sigma \nu \mu \mu \tau \varepsilon \chi \circ ́ v \tau \omega \nu^{19}$.

 ภи́бкодŋ $\tau \eta \nu \pi \alpha \rho \alpha \kappa о \lambda о и ́ \theta \eta \sigma \eta ~ \sigma \varepsilon ~ \pi \varepsilon \rho i ́ \tau \tau \omega \sigma \eta ~ \alpha \pi о к \rho v \pi \tau о \gamma \rho \alpha ́ \varphi \eta \sigma \eta \varsigma . ~ E i ́ v \alpha ı ~ \varepsilon \pi i ́ \sigma \eta s$

[^17]
 $\pi \lambda \eta \rho \omega \mu \varepsilon ́ \varsigma ~ \tau о \cup \varsigma, ~ \theta \alpha \pi \rho \varepsilon ́ \pi \varepsilon ı ~ v \alpha ~ \alpha \pi о \sigma \tau \varepsilon ́ \lambda \lambda о v \tau \alpha ı ~ \eta ́ ~ \pi о v ~ \varepsilon ́ \chi o v v ~ \lambda \eta \varphi \theta \varepsilon i ́, ~ \mu \pi о \rho о v ́ v ~ v \alpha$
 $\pi \rho о \sigma \beta \alpha ́ \sigma \mu \eta ~ \gamma 1 \alpha ~ \tau о \nu ~ о л о ю о \nu \delta \dot{\eta} \pi о \tau \varepsilon$.
4. Av $\eta \eta \mu \varepsilon ́ v \eta ~ \alpha к \rho i ́ \beta \varepsilon ı \alpha ~ \tau \omega v ~ \sigma v v \alpha \lambda \lambda \alpha \gamma \omega ́ v . ~ A \pi o ́ ~ \tau o ́ \tau \varepsilon ~ \pi о v ~ к \alpha \tau \alpha \gamma \rho \alpha ́ \varphi о \nu \tau \alpha ı ~ \tau \alpha ~ \mu \pi \lambda о к ~$

 $\varepsilon v o ́ s ~ v \varepsilon ́ o v ~ \mu \pi \lambda о к, ~ \varepsilon \pi о \mu \varepsilon ́ v \omega \varsigma ~ o l ~ \pi ı \theta \alpha v o ́ \tau \eta \tau \varepsilon \varsigma ~ \alpha v \alpha к р i ́ ß \varepsilon ı \alpha \varsigma ~ \varepsilon i ́ v \alpha ı ~ \sigma \eta \mu \alpha \nu \tau ı к \alpha ́ ~$

5. Алокєvт $\rho \mu \varepsilon ́ v \eta ~ \chi \rho \eta ́ \sigma \eta$. Avtŋ́ $\mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \varepsilon i ́ v \alpha l ~ \mu i ́ \alpha ~ \alpha \pi o ́ ~ \tau ı \varsigma ~ \sigma \eta \mu \alpha \nu \tau \iota к о ́ \tau \varepsilon \rho \varepsilon \varsigma ~$

 $\pi \lambda \eta \rho \omega \mu \varepsilon ́ \varsigma ~ \sigma \tau \eta \nu ~ \pi \alpha \rho \alpha \delta о \sigma \iota \alpha \kappa \eta ́ ~ \tau \rho \alpha \pi \varepsilon \zeta ı к \eta ́ ~ \pi о v ~ \chi \rho \varepsilon ı \alpha ́ \zeta о v \tau \alpha ı ~ \mu o ́ v o ~ \delta \varepsilon v \tau \varepsilon \rho o ́ \lambda \varepsilon \pi \tau \alpha ~ \gamma 1 \alpha$ $\varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma i ́ \alpha$, о́ $\pi \omega \varsigma ~ \eta$ а́ $\mu \varepsilon \sigma \eta ~ \mu \varepsilon \tau \alpha \varphi о \rho \alpha ́ ~ \pi i ́ \sigma \tau \omega \sigma \eta \varsigma ~ \sigma \varepsilon ~ S E P A ~ \delta i ́ \kappa \tau v o, ~ \alpha \lambda \lambda \alpha ́ ~ \varepsilon ́ \chi \varepsilon ı ~ \tau о v \varsigma ~$

[^18]

 ठєv $\lambda \varepsilon \iota \tau 0 \cup \rho \gamma \varepsilon i ́ ~ \kappa \alpha \tau \alpha ́ ~ \tau ı \varsigma ~ \alpha \rho \gamma i ́ \varepsilon \varsigma, ~ к \lambda \pi$. Мє то סíктvo blockchain o $\chi \rho \eta ́ \sigma \tau \eta \varsigma ~ \mu \pi о \rho \varepsilon i ́ ~$

 ต́рєऽ то عוкобוєєтра́шро.

 $\varepsilon \xi \alpha ı \varepsilon \tau \iota \kappa \alpha ́ ~ \chi \alpha \mu \eta \lambda о и ́ ~ к о ́ \sigma \tau о v \varsigma ~ \mu \varepsilon \tau \alpha, \varphi о \rho \varepsilon ́ \varsigma ~ \chi \rho \eta \mu \alpha ́ \tau \omega \nu ~ к \alpha ı ~ \varepsilon \mu \beta \alpha \sigma \mu \alpha ́ \tau \omega \nu ~ \pi \varepsilon ́ \rho \alpha ~ \alpha \pi o ́ ~ \tau \alpha ~$
 vо $\mu \iota \sigma \mu \dot{\alpha} \tau \omega v^{21}$.

 $\tau \alpha \tau \varepsilon \lambda \varepsilon v \tau \alpha i ́ \alpha ~ \chi \rho o ́ v i \alpha . ~ A v \tau \eta ́ ~ \eta ~ \alpha к \rho \alpha i ́ \alpha ~ \mu \varepsilon \tau \alpha \beta \lambda \eta \tau о ́ \tau \eta \tau \alpha ~ \tau \omega v \tau \tau \mu ต ́ v ~ \pi \alpha \rho \alpha ́ \gamma \varepsilon ı ~ \pi о \lambda v ́ ~ \theta o ́ \rho v ß о ~$ $\pi о v$ ка́vєı $\delta v ́ \sigma \kappa о \lambda \eta ~ \tau \eta v ~ \alpha v \alpha ́ \lambda v \sigma \eta . ~ E v \tau v \chi \omega ́ s, ~ v \pi \alpha ́ \rho \chi \varepsilon ı ~ \mu l \alpha ~ \varepsilon v \varepsilon \rho \gamma \eta ́ ~ к \alpha ı ~ \alpha \rho к \varepsilon \tau \alpha ́ ~$

[^19]

 бод́́p α^{22}.

 олоі́о $\varepsilon \chi \chi \varepsilon ı ~ \rho \cup \theta \mu ı \tau \varepsilon \varepsilon ́ ~ \gamma ı \alpha ~ v \alpha ~ \pi \rho о \sigma \tau \alpha \tau \varepsilon v ́ \sigma \varepsilon ı ~ \tau о ~ \delta i ́ к \tau v o ~ \alpha \pi o ́ ~ \tau \eta \nu ~ v \pi \varepsilon \rho \varphi o ́ \rho \tau ı \sigma \eta ~ \mu \varepsilon ́ \sigma \omega ~$

 $\pi \lambda \eta \rho \omega \mu \eta$ я.
 $\chi \rho \eta ́ \sigma \eta$ Bitcoin $\alpha \pi$ ó то 2009 каı $\mu \varepsilon \tau \alpha ́ . ~ A v \tau \alpha ́ ~ \tau \alpha ~ \sigma \tau \alpha \tau \imath \tau \iota \kappa \alpha ́ ~ \sigma \tau о \chi \varepsilon \varepsilon i ́ \alpha ~ \pi \rho о \varepsilon ́ \rho \chi о v \tau \alpha ı ~ \alpha \pi o ́ ~$

[^20]
 олоі́ ωv ह́ $\gamma\llcorner\nu \alpha \nu \sigma \nu v \alpha \lambda \lambda \alpha \gamma \varepsilon ́ \varsigma$.

Ka兀ó тo 2013, үívov $\alpha \nu$ б $\chi \varepsilon \delta o ́ v ~ 60.000 ~ \sigma ט v \alpha \lambda \lambda \alpha \gamma \varepsilon ́ \varsigma ~ B i t c o i n ~ \alpha v \alpha ́ ~ \eta \mu \varepsilon ́ \rho \alpha . ~ \Sigma \tau \alpha ~$

 $\varepsilon \kappa \alpha \tau о \mu \mu v ́ \rho ı \alpha$ бо $\lambda \alpha ́ \rho ı \alpha \alpha v \alpha ́ ~ \eta \mu \varepsilon ́ \rho \alpha{ }^{23}$.
'Eva vó $\mu \iota \sigma \mu \alpha$ غ́ $\chi \varepsilon ı ~ \tau \rho \varepsilon ı \varsigma ~ \lambda \varepsilon ı \tau о v \rho \gamma i ́ \varepsilon \varsigma . ~ П \rho ஸ ́ \tau о v, ~ \chi \rho \eta \sigma \mu \varepsilon v ́ \varepsilon ı ~ \omega \varsigma ~ \mu \varepsilon ́ \sigma o ~ \pi \lambda \eta \rho \omega \mu \eta ́ \varsigma, ~ \mu \varepsilon \tau \eta ~$ $\mu о р \varphi \eta ́ ~ \chi \alpha \rho \tau о v о \mu ı \sigma \mu \alpha ́ \tau \omega v ~ к \alpha ı ~ к \varepsilon \rho \mu \alpha ́ \tau \omega v . ~ \Delta \varepsilon v ́ \tau \varepsilon \rho о v, ~ \chi \rho \eta \sigma \mu \varepsilon ט ́ \varepsilon ı ~ \omega \varsigma ~ \lambda о \gamma ı \tau \iota к \eta ́ ~ \mu о v \alpha ́ \delta \alpha$

 то Bitcoin $\pi \lambda \eta \rho o i ́ ~ \tau o u s ~ \tau \rho \varepsilon ı \varsigma ~ \rho o ́ \lambda o v s ~ \varepsilon v o ́ s ~ v o \mu i ́ \sigma \mu \alpha \tau о \varsigma, ~ \alpha \lambda \lambda \alpha ́ ~ \sigma \tau \eta \nu ~ \pi \rho \alpha ́ \xi \eta ~ \alpha v \tau o ́ ~ \delta \varepsilon v ~$

 $\alpha \pi о \delta$ охŋ́ каı ol $\delta v v \alpha \tau o ́ \tau \eta \tau \varepsilon \varsigma ~ \chi р \eta ́ \sigma \eta \varsigma ~ B i t c o i n ~ \omega \varsigma ~ \mu \varepsilon ́ \sigma o ~ \pi \lambda \eta \rho \omega \mu \eta ́ \varsigma, ~ \varepsilon \pi о \mu \varepsilon ́ v \omega \varsigma, ~ \varepsilon i ́ v \alpha ı ~$
 $\sigma \varepsilon$ Bitcoin, $\alpha \nu \kappa \alpha \imath \alpha v \tau o ́ ~ \sigma v \mu \beta \alpha i ́ v \varepsilon ı . ~ Е \pi о \mu \varepsilon ́ v \omega \varsigma, ~ \delta \varepsilon v ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \lambda \varepsilon \chi \theta \varepsilon i ́ ~ o ́ \tau ı ~ \tau o ~ B i t c o i n ~$

[^21]
КЕФАЛАІО 40: Н ПАРАГЛГН КРҮПТОNOMILMATOЕ KAI H KOЕTO^OГНГH AYTOY

4.1 Н хрŋ́бŋ точ криттоvоцíб $\mu \alpha \tau о \varsigma$

 $\tau \alpha$ BTCs (mining) каı $\mu \pi о \rho о и ́ v ~ v \alpha ~ \alpha \pi о \theta \eta \kappa \varepsilon v \tau о v ́ v ~ \psi \eta \varphi ı к к \alpha ́ . ~ Е \varphi o ́ \sigma o v ~ \varepsilon \pi \alpha \lambda \eta \theta \varepsilon v \tau о v ́ v ~$

 $\varepsilon \pi \alpha \lambda \eta \theta \varepsilon v \mu \varepsilon ́ v \eta$ к $\alpha \iota ~ \kappa \alpha \tau \alpha \gamma \varepsilon \gamma \rho \alpha \mu \mu \varepsilon ́ v \eta ~ b l o c k c h a i n$.
$\Sigma \tau \eta \pi \alpha \rho \alpha \kappa \alpha ́ \tau \omega ~ \varepsilon ı к o ́ v \alpha ~ \varphi \alpha i ́ v o v \tau \alpha ı ~ o l ~ \varepsilon v \varepsilon ́ \rho \gamma \varepsilon ı є \varsigma ~ \pi о v ~ \pi \rho \varepsilon ́ \pi \varepsilon ı ~ v \alpha ~ \gamma i ́ v o v v ~ \gamma ı \alpha ~ v \alpha ~$ $\chi \rho \eta \sigma \mu о \pi о \not ŋ \theta \varepsilon i ́ ~ \tau о ~ B i t c o i n . ~$

Eıkóva 1

 портофо́入ı Bitcoin. Autó баৎ סivet tıs
 v $\alpha \lambda \dot{\alpha} \beta \varepsilon \tau \varepsilon \kappa \alpha \iota$ v α алоӨnкєúouv Bitcoins
 $\mu \iota \alpha \mu$ оvaठıкท́ $\sigma \varepsilon เ \rho \alpha ́ \alpha \pi o ́ ~ ү \rho \alpha ́ \mu \mu \alpha \tau \alpha$

 $\pi \rho о \sigma \omega \pi \leftarrow \kappa \alpha \dot{\alpha} \delta \varepsilon \delta о \mu \varepsilon ́ v \alpha, \alpha \lambda \lambda \dot{\alpha} \sigma \alpha \varsigma$ $\alpha v \alpha \gamma v \omega \rho i \zeta \varepsilon \iota$ oto סiktuo Bitcoin.

31uEbMgunupShBVTewXjtqbBv5MndwIXhb

Ayopáのтє Bitcoins $\mu \varepsilon$ ह́v α тutıкó

 Bitcoin α vta $\lambda \lambda \alpha \kappa т \eta ́ \rho เ o . ~ T \alpha ~ v \varepsilon ̇ \alpha ~ \sigma \alpha \varsigma ~$
 бто тортофо́ $\lambda \iota \sigma \alpha \varsigma$

To סíktuo Bitcoin ertкupúvet tus $\sigma u v \alpha \lambda \lambda \alpha ү \varepsilon ́ \varsigma ~ \mu \varepsilon ~ \tau \eta v ~ к \alpha \tau \alpha ү \rho \alpha ф ท ́ ~$ tous oto "blockchain- $\alpha \lambda$ uoi $\delta \alpha$ $\tau \omega v \mu \pi \lambda$ ок" - о $\beta \alpha \sigma$ เко̧́ кш்ठเкая
 тои vopiбцато؟

 $v \alpha$ $\sigma \varepsilon і \dot{\lambda} \varepsilon \tau \varepsilon ~ \tau เ \varsigma ~ \pi \lambda \eta \rho \omega \mu \varepsilon ́ \varsigma ~ \sigma \varepsilon ~ \alpha ́ \lambda \lambda \varepsilon \varsigma ~$
 óбо то $1 / 100.000 .000$ tou Bitcoin عival
 "Satoshi", $\mu \varepsilon \tau \dot{\alpha}$ tov α เvtүцатıкó

П$\gamma \gamma \eta$: www.aatcomment.org

Eıkóvo 2

Пŋ $\gamma \mathfrak{\eta}:$ Palacio, 2012

 $\varepsilon \varphi \alpha \rho \mu о \gamma \varepsilon ́ \varsigma ~ \tau о v ~ к \rho v \pi \tau о v о \mu i ́ \sigma \mu \alpha \tau о \varsigma ~ \sigma \tau \alpha ~ \tau \eta \lambda \varepsilon ́ \varphi \omega v \alpha, ~ \tau ı \varsigma ~ \tau \alpha \mu \pi \lambda \varepsilon ́ \tau \varepsilon \varsigma ~ \eta ́ ~ \tau о \cup \varsigma ~$

П$\gamma \gamma \eta:$: Palacio, 2012
'Отаv $\delta \eta \mu ю v \rho \gamma \varepsilon i ́ \tau \alpha l ~ \mu i ́ \alpha ~ \delta ı \varepsilon v ́ \theta v v \sigma \eta ~ \gamma \varepsilon v v ı \varepsilon ́ \tau \alpha ı ~ \varepsilon ́ v \alpha ~ \zeta \zeta \varepsilon v \gamma \alpha ́ \rho ı ~ \alpha \pi o ́ ~ к р v \pi \tau о \gamma \rho \alpha \varphi \eta \mu \varepsilon ́ v \alpha ~$ $\kappa \lambda \varepsilon ı \delta \iota \alpha$, то $\delta \eta \mu$ о́бıо каı то $\delta \iota \omega \tau \iota \kappa o ́ . ~$

Eıкóvo 4

AssúOuvan Ritcoin

1M3RLrXve5wcT2ZcJu8WXoXjdh4WXcWQA9

5K8BwE76VsatQiRa5WJpGng7758FAz4vLkMxAry8QnyZTdQJxPn

Пŋ γ ๆ́: Beigel, 2015

 $\alpha v \alpha \lambda o \gamma \varepsilon i ́ ~ \sigma \varepsilon ~ \varepsilon ́ v \alpha ~ \pi о \sigma o ́ ~ B T C . ~$

Eıkóva 5

Пŋ $\gamma \mathfrak{\eta}:$ Palacio, 2012

Н Марía $\pi \rho о \sigma \theta \varepsilon ́ \tau \varepsilon ı ~ \tau о ~ \delta \eta \mu o ́ \sigma ı ~ к \lambda \varepsilon ı \delta i ́ ~ \tau о v ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \tau \eta ~ \delta ı \varepsilon v ́ \theta v v \sigma \eta ~ \pi \rho о о \rho ı \sigma \mu о v ́ ~ к \alpha ı ~ \tau о ~$ тобó π ои $\theta \varepsilon ́ \lambda \varepsilon ı ~ v \alpha ~ \sigma \tau \varepsilon i ́ \lambda \varepsilon ı ~ \sigma \tau \alpha ~ \alpha v \tau i ́ \sigma \tau о \chi \alpha ~ \kappa \varepsilon v \alpha ́ ~ \sigma v \mu \pi \lambda \eta ́ \rho \omega \sigma \eta \varsigma ~ \tau \eta \varsigma ~ к \alpha \rho \tau \varepsilon ́ \lambda \alpha \varsigma ~ \tau о v ~$
 ($\varepsilon \pi$ í̀ $\nu \sigma \eta \pi \rho о \beta \lambda \eta ́ \mu \alpha \tau о \varsigma ~ \alpha \pi o ́ ~ m i n e r s) . ~$

Eıkóva 6

ПП γ ๆ́: Clark, 2013

 $\kappa \alpha \tau \alpha \kappa \varepsilon \rho \mu \alpha \tau \iota \sigma \mu о v$.

Elkóva 7

Пŋ $\gamma \mathfrak{\eta}:$ Palacio, 2012

 $\pi \lambda \eta \rho о \varphi о \rho i ́ \varepsilon \varsigma ~ \tau \omega v \quad \pi \rho о \eta \gamma о v ́ \mu \varepsilon v \omega v$ $\sigma \cup v \alpha \lambda \lambda \alpha \gamma \dot{v}$ тоv BTC. H $\delta ı \alpha \delta ı \kappa \alpha \sigma i ́ \alpha$

Eıkóvo 8

Пŋүף́: Palacio, 2012

 nonce $\pi \rho ı v \tau o$ hash.

Elkóva 9

H pi弓 $\alpha \dot{\lambda} \omega v$
тшv какம்v ???
00000000
0000 .

 то $\sigma \dot{\prime} \sigma \tau \eta \mu \alpha$ Bitcoin $\alpha \pi \alpha \iota \tau \varepsilon i ́ \eta$ vé α

Пŋүף́: Palacio, 2012
 $\mu \varepsilon \tau \alpha \dot{\alpha}$ to hash.

Eıkóvo 10

 o miner $\mu \varepsilon 25$ BTC (2015). H $\varepsilon \pi ı \beta \alpha ́ \beta \varepsilon v \sigma \eta ~ v \pi о \delta ı \pi \lambda \alpha \sigma ı \alpha ́ \zeta \varepsilon \tau \alpha ı ~ \alpha v \alpha ́ ~ 210.000 ~ \mu \pi \lambda о \kappa, ~$

 $\varepsilon \pi o ́ \mu \varepsilon v o v$.

Eıкóva 10

Пךүף́: Palacio, 2012

 $\delta \omega \rho \varepsilon \alpha ́$.

 $\mu \varepsilon \tau \alpha \tau \rho \varepsilon ́ \pi о v v \tau \iota \varsigma \pi \lambda \eta \rho \omega \mu \varepsilon ́ \varsigma ~ \varepsilon \mu \pi о ́ \rho \omega v ~ \alpha \pi o ́ ~ к \rho v \pi \tau о \vee о ́ \mu \imath \sigma \mu \alpha ~ \sigma \varepsilon ~ \pi \alpha \rho \alpha \sigma \tau \alpha \tau \iota к o ́ ~ \chi \rho \eta ́ \mu \alpha$

$\sigma \tau \eta v \mathrm{E} \lambda \lambda \alpha \dot{\alpha} \delta \alpha, \mu \varepsilon \delta \omega \rho \varepsilon \alpha ́ v \alpha \alpha^{\alpha} \lambda \eta \eta \rho \varepsilon \omega \sigma \tau \iota \kappa \eta ́ \kappa \alpha ́ \rho \tau \alpha$ BTC (MasterCard) каı $\pi \lambda \alpha \sigma \tau \iota \kappa \eta ́ \mu \varepsilon$

 $\pi \varepsilon \rho ı \rho ı \sigma \mu \varepsilon ́ v o ~ \alpha \rho ı \theta \mu o ́ ~ \sigma v v \eta ́ \theta \omega \varsigma ~ \gamma 1 \alpha ~ \sigma v \lambda \lambda \varepsilon ́ \kappa \tau \varepsilon \varsigma ~ \eta ́ ~ \omega \varsigma ~ \pi \rho o ́ \tau \alpha \sigma \eta ~ \gamma l \alpha ~ \delta \omega ́ \rho o . ~$

 $\sigma v \vee \alpha \lambda \lambda \alpha \gamma \eta ́ \tau \omega v$ крvлтоvoцı$\sigma \mu \alpha \tau \omega v$. To Bitcoin Core $\mathfrak{\eta}$ Bitcoin-Qt $\mathfrak{\eta}$ Satoshi Client
 о $\mu \alpha \delta \alpha \varsigma ~ \pi р о \gamma \rho \alpha \mu \mu \alpha \tau \iota \sigma \tau ஸ ́ v ~ \pi о v ~ \varepsilon ́ \chi o v v ~ \alpha v \alpha \lambda \alpha ́ \beta \varepsilon ı ~ \tau \eta \nu ~ \alpha \nu \alpha \beta \alpha ́ \theta \mu ı \sigma \eta ~ \tau о v ~ \gamma ı \alpha ~ \tau \eta \nu ~ \sigma \omega \sigma \tau \eta ́$

 $\mu \varepsilon ́ \theta o \delta o$ first-in-first-out (FIFO). To Client $\alpha \pi 0 \theta \eta \kappa \varepsilon v ́ \varepsilon ı$ ó $\lambda \eta \tau \eta \nu$ blockchain $\sigma \tau 0 \nu$

 غ́ $\chi \varepsilon \iota ~ \varepsilon \gamma к \alpha \tau \varepsilon \sigma \tau \eta \mu \varepsilon ́ v o ~ \tau о ~ \lambda о \gamma ı \sigma \mu \kappa к ́ ~ к \alpha ı ~ \eta ~ к \lambda \omega v о \pi о i ́ \eta \sigma \eta ́ ~ \tau о v ~ \sigma \varepsilon ~ \alpha ́ \lambda \lambda о v ~ v \pi о \lambda о \gamma ı \sigma \tau \eta ́ ~ \theta \alpha ~$ $\pi \rho о к \alpha \lambda \varepsilon ́ \sigma \varepsilon 1 ~ \sigma u ́ \gamma \chi \cup \sigma \eta ~ \lambda \varepsilon ı \tau о \cup \rho \gamma i ́ \alpha \varsigma, ~ \alpha \varphi о v ́ ~ о ~ к \alpha ́ \theta \varepsilon ~ \varepsilon ́ v \alpha \varsigma ~ \theta \alpha ~ \pi \alpha \rho \alpha ́ \gamma \varepsilon ı ~ \tau ı \varsigma ~ \delta ı \kappa \varepsilon ́ \varsigma ~ \tau о ט ~$

 тоv $\mu \varepsilon ́ \sigma \omega ~ \varepsilon v o ́ s ~ \varphi ט \lambda \lambda о \mu \varepsilon \tau \rho \eta \tau \eta ́$.

 $\lambda о \gamma \iota \sigma \mu \iota \alpha \dot{\text {. }}$
 єлєรॄєүабía каı $\varepsilon \pi \imath \beta \varepsilon \beta \alpha i ́ \omega \sigma \eta ~ \tau \omega v ~ \sigma v v \alpha \lambda \lambda \alpha \gamma \omega ́ v ~ \sigma \tau о ~ p e e r-t o-p e e r ~ \delta i ́ \kappa \tau v o ~ \tau о v ~$ крилто⿱ониі́б $\mu \alpha \tau$ ся.
 $\tau \omega \nu \chi \rho \eta \sigma \tau \omega ้$.

Elkóva 11

1. Desktop wallet: \&ívaı то $\pi о \rho \tau о \varphi о ́ \lambda ı ~ \pi о v ~ \varepsilon \gamma к \alpha \theta i ́ \sigma \tau \alpha \tau \alpha ı ~ \sigma \varepsilon ~ v \pi о \lambda о \gamma ı \tau \varepsilon ́ \varsigma ~ \mu \varepsilon ~ \delta ı \alpha ́ \varphi о \rho \alpha ~$

 vлๆрєбíєऽ BTC, v α ह́ $\chi \circ v v ~ \alpha v \xi \eta \mu \varepsilon ́ v \eta ~ \alpha \sigma \varphi \alpha ́ \lambda \varepsilon ı \alpha ~ \kappa \alpha ı ~ v \alpha ~ \pi \alpha \rho \varepsilon ́ \chi о v v ~ v \psi \eta \lambda \alpha ́ ~ \varepsilon \pi i ́ \pi \varepsilon \delta \alpha ~$ $\alpha v \omega \nu v \mu i ́ \alpha \varsigma \mu \varepsilon \lambda \varepsilon \iota \tau \circ v \rho \gamma i ́ \varepsilon \varsigma$ mixing.
2. Mobile Wallet: ε ívaı $\varepsilon \varphi \alpha \rho \mu о \gamma \varepsilon ́ \varsigma ~ \gamma ı \alpha ~ \varepsilon ́ \xi v \pi \nu \varepsilon \varsigma ~ \kappa ı v \eta \tau \varepsilon ́ \varsigma ~ \sigma v \sigma \kappa \varepsilon v \varepsilon ́ \varsigma ~ \tau \eta \lambda \varepsilon \varphi \omega ́ v \omega \nu ~ \kappa \alpha ı$

 ВТС $\mu \varepsilon \varepsilon \pi \alpha \lambda \eta \theta^{\theta} \varepsilon v \sigma \eta \pi \lambda \eta \rho \omega \mu \omega ́ v, \mu \varepsilon ́ \sigma \omega \quad \tau \rho i ́ \tau \omega v \delta i \alpha \mu \varepsilon \sigma o \lambda \alpha \beta \eta \tau \omega ́ v$, $\omega \sigma \tau \varepsilon v \alpha \mu \eta \nu$

 $\lambda \varepsilon ı \tau о \cup \rho \gamma$ ıкó Android.

 desktop wallets. Y $\pi \alpha ́ \rho \chi o v v ~ \kappa \alpha ́ \pi о \imath \alpha ~ w e b ~ w a l l e t s ~ \pi o v ~ \varepsilon \pi ı \tau \rho \varepsilon ́ \pi о v v ~ \tau \eta \nu ~ к \rho v \pi \tau о \gamma \rho \alpha ́ \varphi \eta \sigma \eta ~$
 $\varepsilon \pi \imath \pi \rho o ́ \sigma \theta \varepsilon \tau \eta \alpha \pi \circ \theta \eta ́ \kappa \varepsilon v \sigma \eta \sigma \varepsilon$ cold-storage $\mu \varepsilon ́ \sigma \alpha$.
(coindesk.com, 2015)

 $\kappa \lambda \varepsilon เ \delta 10 v ์ ~ \sigma \varepsilon ~ \kappa \alpha ́ \pi о 10 ~ \alpha ́ \lambda \lambda о ~ \mu \varepsilon ́ \sigma o . ~$

Euкóva 12

 $\delta \eta \mu$ юочрүои́vтаı $210.000 \mu \pi \lambda$ ок $\sigma \tau \eta \nu$ blockchain.

Eıкóva 13

Eukóva 15

 H $\chi \rho \eta ́ \sigma \eta ~ \tau \omega \nu$ GPU $\alpha \nu \tau i ́ ~ \tau \omega \nu$ CPU $\gamma ı \alpha$ mining $\varepsilon \pi \varepsilon ́ \varphi \varepsilon \rho \varepsilon$ 50-100 $\pi \varepsilon \rho \iota \sigma \sigma \sigma ́ \tau \varepsilon \rho \eta \tau \alpha \chi \cup ́ \tau \eta \tau \alpha$

 ко́vยı 600 MegaHashes/sec $\mu \varepsilon 400$ watt, ε ह́va $\mu \varepsilon ́ \tau \rho ı ~ F P G A ~ \varepsilon \pi ı \tau v \gamma \chi \alpha ́ v \varepsilon ı ~ 826 ~$
 GigaHashes/sec $\mu \varepsilon 350$ watt ${ }^{24}$.

 (Eligius, μ óvo $\mu \varepsilon \tau \alpha ́ ~ \tau \eta ~ \sigma v \gamma \kappa \varepsilon ́ v \tau \rho \omega \sigma \eta ~ \varepsilon v o ́ s ~ \pi о \sigma o v ́ ~ \pi . \chi . ~ 400 ~ B T C, ~ \gamma ı \alpha ~ \alpha \pi о \varphi v \gamma \eta ́ ~ \sigma v \chi v o ́ v ~$

 Groups) к. α.

 $\gamma i v \varepsilon \tau \alpha 1 ~ \mu \varepsilon ́ \sigma \omega$ cloud, $\chi \omega \rho i ́ s ~ \pi \rho о \beta \lambda \eta ́ \mu \alpha \tau \alpha ~ \varepsilon \gamma \kappa \alpha \tau \alpha ́ \sigma \tau \alpha \sigma \eta \varsigma ~ \mu \eta \chi \alpha \nu \eta \mu \alpha ́ \tau \omega v$, $\sigma \nu \vee \tau \eta ́ \rho \eta \sigma \eta ́ s$

[^22] mining altcoins $\sigma \varepsilon$ BTC \ddagger LTC каı $\delta v v \alpha \tau o ́ \tau \eta \tau \alpha \mu \varepsilon \tau \alpha \pi \omega ́ \lambda \eta \sigma \eta \varsigma ~ \tau \eta \varsigma ~ \imath \sigma \chi ण ́ \varsigma ~ m i n i n g . ~$
Δ ú $\varphi o \rho \varepsilon \varsigma ~ \imath \tau \tau \sigma \sigma \varepsilon \lambda i ́ \delta \varepsilon \varsigma ~(t r a d e b l o c k . c o m, ~ b i t c o i n x . c o m, ~ c o i n w a r z . c o m) ~ \pi \alpha \rho \varepsilon ́ \chi o v v ~ \sigma \tau o v \varsigma ~$

To mining $\delta \varepsilon v$ عívaı $\sigma \eta \mu \alpha \nu \tau \iota \kappa o ́ ~ \mu o ́ v o ~ \gamma ı \alpha ~ \tau \eta \nu ~ \varepsilon \pi ィ \beta \rho \alpha ́ \beta \varepsilon v \sigma \eta ~ \kappa \alpha ı ~ к \varepsilon \rho \delta о \varphi о р i ́ \alpha ~ \tau \omega \nu ~$ miners, $\alpha \lambda \lambda \alpha \dot{\alpha} \gamma 1 \alpha \tau \eta \nu$ кик $\lambda о \varphi о \rho i ́ \alpha ~ v \varepsilon ́ \omega v ~ B T C ~ \sigma \tau \eta \nu ~ \alpha \gamma о \rho \alpha ́ ~ к \alpha ı ~ \tau \eta ~ \delta ı \alpha \delta ı к \alpha \sigma i ́ \alpha ~ P O W ~ \pi о v ~$
 Н бטveұદís $\mu \varepsilon i ́ \omega \sigma \eta ~ \tau 0 v ~ \pi о \sigma о v ́ ~ \tau \eta \varsigma ~ \varepsilon \pi \imath \beta \rho \alpha ́ \beta \varepsilon v \sigma \eta \varsigma, ~ \kappa \alpha ́ \theta \varepsilon ~ \varphi о \rho \alpha ́ ~ \pi о v ~ \pi \rho о \sigma \tau i ́ \theta \varepsilon v \tau \alpha ı ~ 21.000 ~$ $\mu \pi \lambda$ ок $\sigma \tau \eta \nu$ blockchain, $\varepsilon \pi \iota \varphi \varepsilon ́ \rho \varepsilon ı ~ \mu \varepsilon i ́ \omega \sigma \eta ~ \tau \eta \varsigma ~ \pi \rho о \sigma \varphi о \rho \alpha ́ \varsigma ~ В Т С ~ к \alpha ı ~ i ́ \sigma \omega \varsigma ~ \gamma ı \alpha ~ к \alpha ́ \pi о ı ю ง \varsigma ~$ тๆ $\delta \eta \mu ю v \rho \gamma i ́ \alpha ~ \chi \rho \eta \mu \alpha \tau о \pi \iota \sigma \tau \omega \tau \iota к \eta ́ \varsigma ~ \alpha \sigma \tau \alpha ́ \theta \varepsilon ı \alpha \varsigma, ~ \lambda o ́ \gamma о ~ \rho \alpha \gamma \delta \alpha i ́ \alpha \varsigma ~ \alpha v ́ \xi \eta \sigma \eta \varsigma ~ \tau \eta \varsigma ~ \tau \mu \eta ́ \varsigma ~ \tau о v . ~$

 $\mu \varepsilon i \omega ́ v o v \tau \alpha l ~ \sigma u v \varepsilon \chi \omega ́ \varsigma ~ \tau \alpha ~ غ ́ \sigma o \delta \alpha ́ ~ \tau о v, ~ \varepsilon ́ \chi о v \tau \alpha \varsigma ~ v \alpha ~ \alpha v \tau ı \mu \varepsilon \tau \omega \pi i ́ \sigma \varepsilon є ~ \tau \eta v ~ v \pi о \delta ı \alpha i ́ \rho \varepsilon \sigma \eta ~ \tau \eta \varsigma ~$

 $\pi \rho о \sigma \pi \dot{\alpha} \theta \varepsilon \tau \alpha \varsigma \tau<v^{25}$.

4.4 То ко́бтоৎ тŋऽ $\pi \alpha \rho \alpha \gamma \omega \gamma \eta ́ \varsigma ~ \tau o v ~ к \rho \cup \pi \tau о v o \mu i ́ \sigma \mu \alpha \tau о \varsigma ~$

 $\kappa \alpha ́ \nu \varepsilon \iota ~ \kappa \alpha ı ~ \mu \varepsilon \tau \alpha ~ \chi \alpha \mu \eta \lambda o ́ \tau \varepsilon \rho \alpha ~ \varepsilon ́ \xi ์ o \delta \alpha$.

 $\nu \alpha$ रv́бovv ह́va $\mu \pi \lambda о \kappa$ $\chi \omega \rho i ́ \varsigma ~ \tau о ~ \pi \lambda \varepsilon о v \varepsilon ́ к \tau \eta \mu \alpha ~ \tau \eta \varsigma ~ \tau \varepsilon \rho \alpha ́ \sigma \tau l \alpha \varsigma ~ \delta v ́ v \alpha \mu \eta \varsigma ~$

 $\chi \rho \eta ́ \sigma \tau \eta]$.[óvo $\mu \alpha$ « $\varepsilon \rho \gamma \alpha ́ \tau \eta »]-\rho[\kappa \omega \delta \iota \kappa o ́ s ~ \chi \rho \eta ́ \sigma \tau \eta]$].

[^23]$\Sigma \tau \eta ~ \sigma u v \varepsilon ́ \chi \varepsilon 1 \alpha ~ \alpha \pi о Ө \eta \kappa \varepsilon v ́ o v \mu \varepsilon ~ \tau о ~ \alpha \rho \chi \varepsilon i ́ o ~ \alpha \lambda \lambda \alpha ́ \zeta о \nu \tau \alpha \varsigma ~ o ́ ~ \mu \omega \varsigma ~ \tau \eta \nu ~ \varepsilon \pi \varepsilon ́ \kappa \tau \alpha \sigma \eta ~ \tau о v ~ к \alpha ı ~$

 крилтогоці́б $\mu \alpha \tau \alpha^{26}$.

 $\alpha v \alpha \mu \varepsilon v o ́ \mu \varepsilon v \eta \pi \alpha \rho \alpha \gamma \omega \gamma \eta ́ \operatorname{bitcoins~\alpha v\alpha ́~\eta \mu \varepsilon ́\rho \alpha ~\pi оv~\beta \alpha \sigma í\zeta \varepsilon \tau \alpha ı~\varepsilon v~} \mu \varepsilon ́ \rho \varepsilon ı ~ \sigma \tau \eta v ~ \delta v \sigma \kappa о \lambda i ́ \alpha ~$

$\left.\left.\mathrm{BTC} / \eta \mu \varepsilon ́ \rho \alpha=[\beta * \rho) / \delta * 2^{32}\right) / 3600\right] * 24$
'Oлоv BTC / $\eta \mu \varepsilon ́ \rho \alpha, ~ \varepsilon i ́ v \alpha ı ~ o ~ \alpha v \alpha \mu \varepsilon v o ́ \mu \varepsilon v o \varsigma ~ \alpha \rho ı \theta \mu o ́ s ~ b i t c o i n s ~ \pi о v ~ \varepsilon ́ v \alpha \varsigma ~ \chi \rho \eta ́ \sigma \tau \eta \varsigma ~ \mu \pi о \rho \varepsilon ́ ́ ~$ $\nu \alpha \pi \alpha \rho \alpha ́ \gamma \varepsilon \iota ~ \kappa \alpha ́ \theta \varepsilon ~ \eta \mu \varepsilon ́ \rho \alpha$,

[^24]
 $\varepsilon \xi \dot{\eta} \varsigma:$

BTC $/ \eta \mu \varepsilon ́ \rho \alpha=24 *\left(2^{32} / 3600\right) *(25 * 1000) / 47427554950,6483=0,010604$
 $\varepsilon \xi \check{\eta} \varsigma:$
 $\mathrm{GH} / \mathrm{s})$ * (GH / 1000)

 $\alpha v \alpha ́ \quad \eta \mu \varepsilon ́ \rho \alpha ~ \varepsilon \kappa \varphi \rho \alpha ́ \zeta \varepsilon \tau \alpha ı ~ \sigma \varepsilon \$ / \eta \mu \varepsilon ́ \rho \alpha ~ \kappa \alpha ı ~ \eta ~ \pi \alpha \rho \alpha \gamma \omega \gamma \eta ́ ~ \sigma \varepsilon ~ B T C ~ / ~ \eta \mu \varepsilon ́ p \alpha, ~ \tau о ~ \varepsilon \pi i ́ \pi \varepsilon \delta o ~$ $\tau \uparrow \mu \dot{v}$ \$ / BTC عíval $\alpha \pi \lambda \alpha ́ \eta \alpha v \alpha \lambda o \gamma i ́ \alpha ~(\kappa o ́ \sigma \tau o g ~ / ~ \eta \mu \varepsilon ́ p \alpha) ~ / ~(B T C ~ / ~ \eta \mu \varepsilon ́ \rho \alpha) . ~ A v \tau \eta ́ ~ \eta ~$

 $\pi \varepsilon \rho \imath \theta \rho \imath \alpha \kappa \varepsilon ́ \varsigma ~ \alpha \pi \omega ́ \lambda \varepsilon เ \varepsilon \varsigma ~ \chi \rho \eta ́ \mu \alpha \tau о \varsigma . ~ T o ~ p * ~=~ A v \alpha \mu \varepsilon v o ́ \mu \varepsilon v o ~ к о ́ \sigma \tau о \varsigma ~ \varepsilon \xi o ́ \rho v \xi ŋ \eta \varsigma ~ / ~ B T C ~ / ~$ $\eta \mu \varepsilon ́ \rho \alpha$.

 $24 * 0.95) *(1.000 / 1.000)=2.622$ бо $\lambda \dot{\alpha} \rho \iota \alpha / \eta \mu \varepsilon ́ \rho \alpha$.

[^25] $\beta \rho \varepsilon \theta \varepsilon i ́ ~ \alpha v \alpha ́ ~ \eta \mu \varepsilon ́ \rho \alpha ~ \varepsilon \varphi o ́ \sigma o v ~ \gamma v \omega \rho i ́ \zeta o v \mu \varepsilon$ ótı $\delta=47.427 .554 .951$ عívaı 0,010604 BTC /

 $\sigma \tau \alpha \mu \alpha \tau \sigma v ́ \sigma \alpha v \quad \pi \alpha \rho \alpha \gamma \omega \gamma \eta$ bitcoins. $\Sigma v v \varepsilon \chi i ́ \zeta o v \tau \alpha \varsigma ~ \tau \eta v ~ \alpha v \alpha ́ \lambda v \sigma \eta ~ \alpha v \tau o v ́ ~ \tau о v ~$

4.5.1 К $\tau \alpha \alpha ́ \sigma \tau \alpha \sigma \eta ~ \tau \alpha \mu \varepsilon \iota \alpha к о и ́ ~ \pi \rho о и ̈ т о \lambda о ү เ \sigma \mu о и ́ ~$

 $\varepsilon \pi$ о́ $\mu \varepsilon v o \quad \mu \eta ́ v \alpha$ каı $10 \% \mu \varepsilon ́ \sigma \alpha$ бто τ рі́то $\mu \eta ́ v \alpha$.
 Алоб阝દ́бєıऽ Mapтíov 10.000 BTC
 $\sigma \tau о v \varepsilon \pi o ́ \mu \varepsilon v o ~ \mu \eta ́ v \alpha$.

[^26]

4．5．2 Проӥтодоүьбцо́я т $\alpha \rho \alpha \gamma \omega \gamma \eta ́ \varsigma$

Iov́dıos	Av́yovotos		$\Sigma \varepsilon \pi \tau \varepsilon \dot{\varepsilon} \mu \beta \rho 10 \varsigma$	Октө́ßрıоя
Поов入єло́ $\mu \varepsilon \nu$	30.000	45.000	60.000	50.000
$\varepsilon \varsigma$ Пぃ入ŋ́б\＆ıऽ				
$\Sigma \mathrm{v}$ E $\pi 1 \theta$ ．	4.500	6.000	5.000	－

Té̇ous

इuvo入ıкと́s	34.500	51.000	65.000	50.000

Avóүкєऽ

(Mcíov)	3.000	4.500	6.000	5.000

Apдıќ́
$\alpha \pi о$ е́ $\mu \alpha \tau \alpha$

$\pi \alpha \rho \alpha \gamma \omega \gamma \eta ́$


```
\(\alpha \pi o ́ \sigma \beta \varepsilon \sigma \eta\)
```

Ектаці́єvбך Мєтрŋ $\tau \dot{v} \gamma 1 \alpha$ غ́ $\mu \mu \varepsilon \sigma о$

KЕФАААIO 5: H AГФAへEIA $\Sigma T I \Sigma ~ \Sigma Y N A \Lambda \Lambda A Г E \Sigma ~ M E ~$ KPYПTONOMIइMATA KAI OI $\Sigma \Upsilon \Sigma K E Y E \Sigma ~ P . O . S$

5.1 Tı عívaı to Point of Sale (P.O.S);

 Eívaı $\varepsilon \pi i ́ \sigma \eta \varsigma ~ \tau о ~ \sigma \eta \mu \varepsilon i ́ o ~ к \alpha \tau \alpha ́ ~ \tau о ~ о \pi о$ о о $\pi \varepsilon \lambda \alpha ́ \tau \eta \varsigma ~ \pi \rho \alpha \gamma \mu \alpha \tau о \pi о є \varepsilon ́ ~ \pi \lambda \eta \rho \omega \mu \eta ́ ~ \sigma \tau о v ~$
 غ́ $\mu \pi о \rho о \varsigma ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \varepsilon к \delta \omega ́ \sigma \varepsilon ı ~ \mu ı \alpha ~ \alpha \pi o ́ \delta \varepsilon ı \xi \eta ~ \gamma ı \alpha ~ \tau \eta ~ \sigma u v \alpha \lambda \lambda \alpha \gamma \eta ́, ~ \eta ~ о \pi о i ́ \alpha ~ \sigma u v \eta ́ \theta \omega \varsigma ~$

 $\pi \rho о ́ \sigma \theta \varepsilon \tau \eta ~ \lambda \varepsilon ı \tau о \cup \rho \gamma \iota к о ́ \tau \eta \tau \alpha$, о́ $\pi \omega \varsigma ~ \eta ~ \delta ı \alpha \chi \varepsilon i ́ \rho ı \sigma \eta ~ \alpha \pi о \theta \varepsilon \mu \alpha ́ \tau \omega v, ~ \tau \alpha ~ о ו к о v о \mu ı к \alpha ́ ~ \tau \eta v$ $\alpha \pi о \theta \dot{́} \kappa \varepsilon \cup \sigma \eta \kappa \tau \lambda^{30}$.

[^27] $\varepsilon \lambda \varepsilon ́ \gamma \chi \circ v \tau \omega v \alpha \pi о \theta \varepsilon \mu \alpha ́ \tau \omega v$.

5.2 H $\lambda \varepsilon ı \tau 0 \cup \rho \gamma i ́ \alpha \tau \omega v$ P.O.S

Н $\varepsilon \mu \varphi \alpha ́ v i \sigma \eta ~ \tau \eta \varsigma ~ \tau \varepsilon \chi v o \lambda o \gamma i ́ \alpha s$ internet cloud $\delta \eta \mu ю v ์ \rho \gamma \eta \sigma \varepsilon \tau \eta \delta v v \alpha \tau o ́ \tau \eta \tau \alpha ~ \tau \omega v$ POS
 $\pi \rho о \sigma \pi \varepsilon \lambda \alpha \sigma \tau \varepsilon i ́ \alpha \pi \varepsilon v \theta \varepsilon i ́ \alpha \varsigma ~ \alpha \pi o ́ ~ \tau о ~ \delta ı \alpha \delta i ́ к \tau v o ~ \chi \rho \eta \sigma \mu о \pi о 七 ө ́ v \tau \alpha \varsigma ~ о \pi о 七 о \delta \eta ́ \pi о \tau \varepsilon ~ \pi \rho о ́ \gamma \rho \alpha \mu \mu \alpha$

 $\kappa \alpha \iota \mu \varepsilon \rho ı \varepsilon ́ \varsigma ~ \varphi о \rho \varepsilon ́ \varsigma ~ t a b l e t ~ o ́ \pi \omega \varsigma ~ \tau о ~ i P a d ~ \tau \eta \varsigma ~ A p p l e . ~ ' E \tau \sigma ı, ~ \tau о ~ P O S ~ \pi о v ~ \beta \alpha б i ́ ̌ \varepsilon \tau \alpha ı ~ \sigma \varepsilon ~$

 cloud ${ }^{31}$.

[^28]

5.3 Н хрŋ́бך т $\omega \nu$ P.O.S бто $\lambda \iota \alpha \nu \iota \kappa o ́ ~ \varepsilon \mu \pi о ́ \rho เ о ~$

 $\chi \rho \eta \mu \alpha \tau о \pi ı \sigma \tau \omega \tau \iota \kappa \delta ́ \sigma v ́ \sigma \tau \eta \mu \alpha^{32}$.

M $\varepsilon \tau \eta \nu \varepsilon \pi ィ \beta \circ \lambda \eta ́ \tau \omega \nu$ capital controls ó $\pi \omega \varsigma$ $\alpha v \alpha \varphi \varepsilon ́ \rho \theta \eta \kappa \varepsilon$ oı $\pi \varepsilon \lambda \alpha ́ \tau \varepsilon \varsigma ~ \mu \pi о \rho о v ́ \sigma \alpha \nu v \alpha$ ко́vovv $\alpha v \alpha ́ \lambda \eta \psi \eta ~ \chi \rho \eta \mu \alpha ́ \tau \omega v ~ \tau о ~ \pi о \lambda v ́ ~ 60 ~ \varepsilon v \rho ต ́ ~ \alpha v \alpha ́ ~ \lambda о \gamma \alpha \rho ı \alpha \sigma \mu o ́ ~ \alpha \pi o ́ ~ \tau \alpha ~ A T M . ~ A v \tau i ́ \theta \varepsilon \tau \alpha ~$
 «л $\lambda \alpha \sigma \tau \iota \kappa o ́ ~ \chi \rho ฑ ́ \mu \alpha » ~ o ́ \pi \omega \varsigma ~ \alpha v \tau \varepsilon ́ \varsigma ~ o v o \mu \alpha ́ \zeta o v \tau \alpha ı . ~$

[^29]

 ๆ $\lambda \varepsilon \kappa \tau \rho о v$ וкळ́v $\sigma \cup v \alpha \lambda \lambda \alpha \gamma \omega ́ v$.

 super markets $\mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \pi \varepsilon \rho \imath \lambda \alpha \mu \beta \alpha ́ v \varepsilon ı ~ \pi \lambda \eta \kappa \tau \rho о \lambda о ́ \gamma ı ~ к \alpha ı ~ \pi о v \tau i ́ \kappa 1, ~ \sigma \eta ́ \mu \varepsilon \rho \alpha ~ o 七 ~$

 лоүъбнוко́ POS $\mu \pi о \rho \varepsilon i ́ ~ \varepsilon \pi i ́ \sigma \eta \varsigma ~ v \alpha ~ \varepsilon \pi ı \tau \rho \varepsilon ́ \pi \varepsilon є ~ \lambda \varepsilon ı \tau о v \rho \gamma i ́ \varepsilon \varsigma ~ o ́ \pi \omega \varsigma ~ \pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau \iota \sigma \mu \varepsilon ́ v \varepsilon \varsigma ~$

H μ оvá $\delta \alpha$ POS $\chi \varepsilon \emptyset i \zeta ̧ \varepsilon \tau \alpha l ~ \tau 1 \varsigma ~ \pi \omega \lambda \eta ́ \sigma \varepsilon ı \varsigma ~ \sigma \tau о v ~ \kappa \alpha \tau \alpha v \alpha \lambda \omega \tau \tau ́, ~ \alpha \lambda \lambda \alpha ́ ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \mu o ́ v o ~ \varepsilon ́ v \alpha ~$

 $\alpha \pi$ ќ каı $\pi \rho о \varsigma$ д́ $\lambda \lambda \varepsilon \varsigma ~ \tau о \pi о \theta \varepsilon \sigma i ́ \varepsilon \varsigma . ~ A \lambda \lambda \varepsilon \varsigma ~ \tau ข \pi ı \kappa \varepsilon ́ \varsigma ~ \lambda \varepsilon ı \tau о ט \rho \gamma i ́ \varepsilon \varsigma ~ \varepsilon v o ́ \varsigma ~ \sigma ט \sigma \tau \eta ́ \mu \alpha \tau о \varsigma ~ P O S ~$

 $\alpha v \alpha ́ \lambda v \sigma \eta ~ к o ́ \sigma \tau o v s ~ / ~ \tau \mu \eta ́ s ~ / ~ к \varepsilon ́ p \delta o v ̧ . ~ O i ~ \pi \lambda \eta \rho о ч о р i ́ є \varsigma ~ \pi \varepsilon \lambda \alpha \tau ஸ ́ v ~ \mu \pi о р о и ́ v ~ v \alpha ~$

[^30]

 $\mu \varepsilon ́ \sigma \omega \tau \eta \varsigma ~ \chi \rho \eta ́ \sigma \eta \varsigma \mu ı \alpha \varsigma ~ \varepsilon v ı \alpha i ́ \alpha \varsigma ~ \kappa \varepsilon v \tau \rho ı \kappa \eta ́ \varsigma ~ \beta \alpha ́ \sigma \eta \varsigma ~ \delta \varepsilon \delta о \mu \varepsilon ́ v ต v ~ \gamma ı \alpha ~ \tau ı \varsigma ~ \lambda \varepsilon ı \tau о \cup \rho \gamma i ́ \varepsilon \varsigma . ~$

 $\mu \eta \chi \alpha v \varepsilon ́ \varsigma ~ \varepsilon ́ \tau о \mu \varepsilon \varsigma ~ \gamma ı \alpha ~ \chi \rho \eta ́ \sigma \eta ~ \sigma \tau o ~ I n t e r n e t ~ \varepsilon i ́ v \alpha ı ~ \chi \alpha \rho \alpha \kappa \tau \eta \rho ı \sigma \tau \iota \kappa \varepsilon ́ \varsigma ~ \sigma \varepsilon ~ \alpha v \tau o ́ v ~ \tau o v ~ \kappa \lambda \alpha ́ \delta o . ~$

 $\chi \rho \eta \sigma \tau \omega \nu^{34}$.

[^31]
5.4 H $\chi \rho \eta \sigma \iota \mu o ́ \tau \eta \tau \alpha \kappa \alpha \iota \eta \alpha \sigma \varphi \alpha ́ \lambda \varepsilon \iota \alpha \tau \omega \nu \sigma v v \alpha \lambda \lambda \alpha \gamma \omega \dot{\nu} \mu \varepsilon \tau \eta$ $\chi \rho \eta \dot{\sigma} \eta \tau \omega \nu$ P.O.S

 єгаıрєías.

 то $\sigma v ́ \sigma \tau \eta \mu \alpha$ POS $\alpha v \xi \alpha ́ v \varepsilon 1 ~ \varepsilon \pi i ́ \sigma \eta \varsigma ~ \tau \eta \nu ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau ו \kappa o ́ \tau \eta \tau \alpha ~ \tau о v ~ к \alpha Ө \eta \mu \varepsilon \rho เ v o v ́ ~$

[^32]

 $\pi \varepsilon \lambda \alpha ́ \tau \varepsilon \varsigma$.

 ह́v α кєvó $\alpha \sigma \varphi \alpha \lambda \varepsilon i ́ \alpha \varsigma$.

Прокєцє́vоv v $\alpha \pi о \varphi \varepsilon \cup \chi \theta \varepsilon i ́ ~ \eta ~ к \lambda о \pi \grave{~ \tau \omega v ~ \pi о \sigma ळ ́ v ~ к \alpha ı ~ \tau \omega v ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \omega v, ~ \varepsilon i ́ v \alpha ı ~ \sigma \eta \mu \alpha v \tau ı к о ́ ~}$ $\gamma 1 \alpha$ ह́va $\sigma v ́ \sigma \tau \eta \mu \alpha$ POS va $\delta \eta \mu ю v \rho \gamma \varepsilon i ́ ~ \kappa \alpha l ~ v \alpha ~ \varepsilon \pi \imath \theta \varepsilon \omega \rho \varepsilon i ́ ~ \mu i \alpha ~ \eta \mu \varepsilon \rho \eta ́ \sigma ı \alpha ~ \lambda i ́ \sigma \tau \alpha ~$

 $\alpha к о \rho \omega \mu \varepsilon ́ v \omega v ~ \pi \omega \lambda \eta ́ \sigma \varepsilon \omega v ~ \alpha \pi o ́ ~ \varepsilon ́ v \alpha ~ \sigma v \gamma к \varepsilon к \rho ц \varepsilon ́ v o ~ \tau \alpha \mu \varepsilon i ́ o, ~ \pi о v ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \sigma v \mu \beta \alpha i ́ v \varepsilon ı ~ к \alpha ı ~$ $v \alpha \alpha v \alpha \lambda \alpha ́ \beta \varepsilon ı$ бр $\alpha ́ \sigma \eta ~ \pi \alpha \rho \alpha \kappa о \lambda о v ́ \theta \eta \sigma \eta \varsigma^{36}$.

Паро́ ó $\lambda \varepsilon \varsigma ~ \alpha v \tau \varepsilon ́ \varsigma ~ \tau ı \varsigma ~ \pi \rho о \varphi \cup \lambda \alpha ́ \xi \varepsilon ı \varsigma ~ \kappa \alpha ı ~ \tau \alpha ~ \pi \rho \omega \tau о ́ к о \lambda \lambda \alpha ~ \alpha \sigma \varphi \alpha \lambda \lambda \varepsilon i ́ \alpha \varsigma ~ \pi о v ~ \varepsilon \varphi \alpha \rho \mu o ́ \zeta о \nu \tau \alpha ı, ~$

[^33]

 $\alpha \pi \alpha ı \tau \varepsilon i ́ t \alpha ı ~ \alpha \pi o ́ ~ o ́ \lambda \alpha ~ \tau \alpha ~ \sigma v v \alpha \lambda \lambda \alpha \sigma \sigma o ́ \mu \varepsilon v \alpha \mu \varepsilon ́ \rho \eta ~ \varepsilon \gamma \rho গ ́ \gamma о \rho \sigma \eta ~ к \alpha ı ~ \pi \rho о \sigma о \chi \eta^{37}$.

5.5 Tро́тоь $\varepsilon \xi \alpha \sigma \varphi \alpha ́ \lambda เ \sigma \eta \varsigma ~ \tau \eta \varsigma ~ \alpha \sigma \varphi \alpha ́ \lambda \varepsilon เ \alpha \varsigma ~ \tau \omega v ~ \sigma u v \alpha \lambda \lambda \alpha \gamma \omega ́ v \mu \varepsilon$ криттоvоці́бната

 η vлоүрафŋ́ S=encrypt(H, Kpriv), η олоі́а $\sigma \tau \varepsilon ́ \lambda \nu \varepsilon \tau \alpha \iota ~ \mu \varepsilon ~ \tau о ~ H M ~ \sigma \tau о v ~ \pi \alpha \rho \alpha \lambda \eta ́ \pi \tau \eta . ~ O ~$
 $\alpha \pi о к \rho \cup \pi \tau о \gamma \rho \alpha \varphi \varepsilon i ́ H^{\prime}=\operatorname{decrypt(S,~Kpub)~к\alpha ı~\sigma ט\gamma крívov\tau \alpha \varsigma ~\tau \alpha ~} \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha \mathrm{H}^{\prime}=\mathrm{H}$
 тo Bitcoin ovoبá̧̧́čal «Elliptic Curve Digital Signature Algorithm».

E¢óбov γ ívouv ol $\sigma v v \alpha \lambda \lambda \alpha \gamma \varepsilon ́ \varsigma ~ \sigma \tau о ~ \sigma ט ́ \sigma \tau \eta \mu \alpha ~ B i t c o i n, ~ \alpha v \alpha \mu \varepsilon \tau \alpha \delta i ́ \delta o v \tau \alpha ı ~ \sigma \tau о ~ \delta i ́ \kappa \tau v o ~ \gamma ı \alpha ~$

[^34]

Eıкóva 16

To Root Hash $\mu \alpha \zeta ̌ i ́ \mu \varepsilon$ то $\pi \rho о \eta \gamma o v ́ \mu \varepsilon v o ~ H a s h ~(P r e v ~ H a s h) ~ к \alpha ı ~ \varepsilon ́ v \alpha v ~ \tau v \chi \alpha i ́ o ~ \alpha p ı \theta \mu o ́ ~$

 work.
 ($\pi . \chi$. 000000000000002a9067g1ch7256433k7adb619c89d266425a70ac0e014689e0),

Eukóva 17

КЕФАЛАIO 6: ПАРАОІКОNOMIA, ФОРОДIAФҮГН KAI КРҮПTONOMIEMATA

 $\pi \varepsilon \rho \iota \sigma \sigma о ́ \tau \varepsilon \rho \varepsilon \varsigma \alpha \pi$ а́ $\alpha \tau \varepsilon ́ \varsigma ~ \tau \iota \varsigma ~ \delta v \sigma \kappa о \lambda i ́ \varepsilon \varsigma$.

 $\varepsilon \kappa \tau о ́ \varsigma ~ \tau \omega \nu ~ \alpha \tau \varepsilon \lambda \varepsilon i ́ \omega v ~ \kappa \alpha ı ~ \tau \omega v ~ \varepsilon \gamma \gamma \varepsilon v \omega ́ v ~ \delta v \sigma \kappa о \lambda ı \omega ́ v ~ \pi о v ~ v \pi \alpha ́ \rho \chi о v \nu ~ \sigma \tau о ~ \sigma v ́ \sigma \tau \eta \mu \alpha$

[^35]

 $\varepsilon \varphi \alpha \rho \mu$ ó̧ov $\alpha \alpha$.

 $\mu \varepsilon \lambda \varepsilon \tau \eta \tau \varepsilon ́ \varsigma$.

[^36] А.Е.П. η к $\lambda о \pi \eta ́, ~ \eta ~ о \pi о i ́ \alpha ~ \varepsilon i ́ v \alpha ı ~ \pi \alpha \rho \alpha ́ v o \mu \eta ~ \delta \rho \alpha \sigma \tau \eta \rho ı o ́ \tau \eta \tau \alpha ~ \pi о v ~ \varepsilon \pi \iota \varphi \varepsilon ́ \rho \varepsilon ı ~ \mu \varepsilon \tau \alpha \beta i ́ \beta \alpha \sigma \eta ~$

 $\pi \alpha \rho \varepsilon \mu \pi o ́ \delta ı \sigma \mathfrak{~ \tau o v \varsigma . ~ E \pi ı \pi \lambda \varepsilon ́ o v , ~ o ı ~ E \theta v ı к o i ́ ~ \Lambda o \gamma \alpha \rho ı \alpha б \mu о i ́ ~ \chi o ́ v o v v ~ \tau \eta \nu ~ \alpha \xi ̆ ı \pi ı \sigma \tau i ́ \alpha ~ \tau o v \varsigma ~ \omega \varsigma ~}$

 $\pi \alpha \rho \varepsilon ́ \chi \varepsilon \imath ~ \sigma \alpha \varphi \varepsilon i ́ \varsigma ~ о \delta \eta \gamma i ́ \varepsilon \varsigma ~ \sigma \tau \alpha ~ к \rho \alpha ́ \tau \eta-\mu \varepsilon ́ \lambda \eta ~ \gamma 1 \alpha ~ \tau \eta \nu ~ \varepsilon \nu \sigma \omega \mu \alpha ́ \tau \omega \sigma \eta ~ \tau \eta \varsigma ~ \pi \alpha \rho \alpha о ı к о v о \mu i ́ \alpha \varsigma$
 $\pi \alpha \rho о$ б人ц $\alpha \pi о ́ \varphi \alpha \sigma \eta \varsigma ~ \varepsilon i ́ v \alpha ı ~ \eta ~ \beta \varepsilon \lambda \tau i ́ \omega \sigma \eta ~ \tau \eta \varsigma ~ \pi \lambda \eta \rho o ́ \tau \eta \tau \alpha \varsigma ~ \tau o v ~ A . E . П . ~ \tau \omega v ~ к \rho \alpha \tau \omega ́ v-$

 $\alpha \sigma \varphi \alpha ́ \lambda ı \sigma \eta \zeta^{\prime}$.

 $\pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta ~ \tau \eta \varsigma ~ E \lambda \lambda \alpha ́ \delta \alpha \varsigma, ~ \eta ~ о \pi о i ́ \alpha ~ \tau о ~ 2006 ~ \alpha \pi о \varphi \alpha ́ \sigma ı б \varepsilon ~ \tau \eta \nu ~ \varepsilon \vee \sigma \omega \mu \alpha ́ \tau \omega \sigma \eta ~ \tau \eta \varsigma ~$

[^37]$\varepsilon \pi ı \tau \varepsilon \cup \chi \theta \varepsilon i ́ ~ \eta ~ \mu \varepsilon i ́ \omega \sigma \eta ~ \tau о v ~ \delta \eta \mu о \sigma ю v о \mu \iota к о v ́ ~ \varepsilon \lambda \lambda \varepsilon i ́ \mu \mu \alpha \tau о \varsigma ~ к \alpha ́ \tau \omega ~ \alpha \pi o ́ ~ \tau o ~ o ́ \rho ı ~ \tau \eta \varsigma ~$

 η Eurostat $\varepsilon v \varepsilon ́ \kappa \rho ı v \varepsilon ~ \tau \eta \nu ~ \alpha v ́ \xi ̇ \eta \sigma \eta ~ \tau o v ~ A . E . П . ~ к \alpha \tau \alpha ́ ~ 9,6 \% . ~ T \eta \nu ~ i ́ \delta ı \alpha ~ \mu \varepsilon ́ \theta o \delta o ~ \mu \varepsilon ~ \tau \eta \nu$

 чоробı $\alpha \varphi \vee \gamma ŋ ́ ~ \chi \omega \rho i ́ s ~ \pi \alpha \rho \alpha о ı к о v о \mu i ́ \alpha . ~$

 $\alpha \rho ı \theta \mu o ́ s ~ \varphi o ́ \rho \omega v ~ \kappa \alpha ı ~ o l ~ \imath \delta ı \alpha ı \tau \varepsilon \rho o ́ \tau \eta \tau \varepsilon \varsigma ~ \tau о v ~ \kappa \alpha ́ \theta \varepsilon ~ \varphi o ́ \rho о v ~ \sigma \varepsilon ~ \sigma \chi \varepsilon ́ \sigma \eta ~ \mu \varepsilon ~ \tau ı \varsigma ~ \delta v v \alpha \tau o ́ \tau \eta \tau \varepsilon \varsigma ~ к \alpha ı ~$

 $\varepsilon \iota \sigma \pi \rho \alpha ́ \tau \tau \varepsilon \tau \alpha \iota ~ \kappa \alpha ı ~ v \alpha ~ \alpha \pi о \delta i ́ \delta \varepsilon \tau \alpha ı ~ \varepsilon \theta \varepsilon \lambda о \nu \tau \iota \kappa \alpha ́ ~ \sigma \tau о ~ к р \alpha ́ \tau о \varsigma ~ \kappa \alpha ı ~ \gamma ı \alpha ~ о \pi о ю о \delta \eta ́ \pi о \tau \varepsilon ~ \lambda o ́ \gamma о ~ \delta \varepsilon v ~$甲то́vદı лотદ́ $\sigma \tau о ~ \delta \eta \mu o ́ \sigma ぃ ~ \tau \alpha \mu \varepsilon i ́ o » . ~$

O бט́vӨغto̧ $\alpha v \tau o ́ \varsigma ~ o \rho ı \sigma \mu o ́ \varsigma ~ \varepsilon i ́ v \alpha ı ~ \alpha \rho \kappa \varepsilon \tau \alpha ́ ~ \varepsilon v \rho v ́ \varsigma ~ \kappa \alpha ı ~ \sigma v v \varepsilon \pi \alpha ́ \gamma \varepsilon \tau \alpha ı ~ \tau \alpha ~ \pi \alpha \rho \alpha \kappa \alpha ́ \tau \omega: ~$

 $\alpha v \alpha \varphi \varepsilon \rho о ́ \mu \alpha \sigma \tau \alpha v \alpha \pi о \kappa \lambda \varepsilon เ \sigma \tau \iota \kappa \alpha ́ ~ \sigma \tau о ~ \alpha v \tau i ́ \sigma \tau о \chi \chi ~ \pi о \sigma o ́ ~ \tau о v ~ \varphi o ́ \rho о v . ~$

[^38]O орıб μ ós $\alpha v \tau o ́ s ~ \pi \varepsilon \rho \imath \lambda \alpha \mu \beta \alpha ́ v \varepsilon ı ~ \mu \varepsilon \tau \alpha \xi v ́ ~ \alpha ́ \lambda \lambda \omega v ~ к \alpha ı ~ \tau \eta ~ \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta ~ к \alpha \tau \alpha ́ ~ \tau \eta v ~ о \pi о i ́ \alpha ~$
 $\varepsilon і ́ \sigma \pi \rho \alpha \xi \eta$ тоv.

 عíval oı $\varepsilon \xi \eta^{43} S^{43}$

 тทร фородоүюки́я η өки́s

[^39]

 عívaı $\delta v v \alpha \tau o ́ ~ v \alpha \mu \varepsilon \tau \rho \eta \theta \varepsilon i ́ ~ \kappa \alpha ı ~ v \alpha ~ \kappa \alpha \tau \alpha \gamma \rho \alpha \varphi \varepsilon i ́ ~ \alpha \pi o ́ ~ \tau ı \varsigma ~ \alpha \rho \mu o ́ \delta ı \varepsilon \varsigma ~ v \pi \eta \rho \varepsilon \sigma i ́ \varepsilon \varsigma . ~$

 $\pi \rho о \sigma \pi \alpha \theta \varepsilon เ \dot{v} \tau \eta \varsigma \alpha \pi о ́ \kappa \rho v \psi \eta \varsigma$.

 $\nu \alpha$ єрүабтоv́v $\alpha \pi о к \lambda \varepsilon ו \sigma \tau ו \kappa \alpha ́ ~ \sigma \tau \eta \nu ~ \alpha \nu \varepsilon \pi i ́ \sigma \eta \mu \eta ~ о ו к о v о \mu i ́ \alpha ~ ต ́ \sigma \tau \varepsilon ~ v \alpha ~ \varepsilon \pi \omega \varphi \varepsilon \lambda \eta \theta o v ́ v ~ \varepsilon i ́ t \varepsilon ~$ $\mu \iota \sigma Ө$ одоүıќ (като́тıv $\sigma \cup \mu \varphi \omega v i ́ \alpha \varsigma ~ \mu \varepsilon ~ \tau о v ~ \varepsilon \rho \gamma о \delta o ́ \tau \eta), ~ \lambda o ́ \gamma \omega ~ \tau \eta \varsigma ~ \mu \eta ~ к \alpha \tau \alpha \beta о \lambda \eta ́ s ~$

[^40]

 $\varepsilon \sigma o ́ \delta \omega v ~ \pi о v ~ \delta \varepsilon v ~ \mu \pi о \rho о v ́ \sigma \alpha \nu ~ v \alpha ~ \varepsilon \iota \sigma \pi \rho \alpha \chi \theta о v ́ v ~ к \alpha ı ~ \mu ı \alpha ~ « \mu \alpha v ́ \rho \eta ~ \tau \rho и ́ \pi \alpha » ~ \sigma \tau о ~ к р \alpha \tau ı к о ́ ~$

इтo $\pi \lambda \alpha i ́ \sigma ı o ~ \alpha v \tau o ́ ~ \eta ~ A v \varepsilon \xi ̧ ́ \alpha \rho \tau \eta \tau \eta ~ A \rho \chi \eta ́ ~ \Delta \eta \mu о \sigma i ́ \omega v ~ E \sigma o ́ \delta \omega v ~ к \alpha ı ~ \eta ~ \eta \gamma \varepsilon \sigma i ́ \alpha ~ \tau o v ~$

[^41]

 $\alpha v \alpha \kappa \rho \beta \dot{\rho} \nu \eta \eta \not \omega \sigma \sigma \varepsilon \omega v$.

 $\Delta ı \delta ı \kappa \alpha \sigma \iota \omega ́ v$.
 $\pi \rho о к$ и́лтоvбаৎ $\pi \rho о ́ \sigma \theta \varepsilon \tau \eta \varsigma ~ \delta ı \alpha \varphi о \rho \alpha ́ \varsigma ~ \varphi o ́ \rho о v ~ к \alpha ı ~ o ́ \chi ı ~ \tau о ~ 10 \%-50 \% ~ \varepsilon \pi i ́ ~ \tau \eta \varsigma ~ \delta ı \alpha \varphi о \rho \alpha ́ \varsigma ~$

[^42] бтофхвía $\gamma 1 \alpha$ та $\alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha ~ \tau о v ~ \pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau о \varsigma ~ \varepsilon \theta \varepsilon \lambda о v ́ \sigma l \alpha \varsigma ~ \alpha \pi о к \alpha ́ \lambda v \psi \eta \varsigma ~$

 $\alpha v \alpha ́ \gamma v \omega \sigma \eta:$

 $\alpha \delta \dot{\eta} \lambda \omega \tau \omega v$ عוбоס $\eta \mu \alpha ́ \tau \omega v$.

 $\delta \eta \lambda \alpha \delta \eta ́ \chi \omega \rho i ́ \varsigma ~ \tau \eta v$ غ́ $\gamma \kappa \rho \iota \sigma \eta \tau \omega v$ $\theta \varepsilon \sigma \mu \omega ́ v$.

Tрía $\mu \varepsilon ́ \tau \rho \alpha ~ Ө \varepsilon \omega \rho о v ́ v \tau \alpha l ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \alpha ~ \pi \rho o \varsigma ~ \tau \eta \nu ~ к \alpha \tau \varepsilon v ́ \theta v v \sigma \eta ~ \tau \eta \nu ~ \varepsilon v i ́ \sigma \chi v \sigma \eta ร ~ \tau \omega \nu$ $\eta \lambda \varepsilon \kappa \tau \rho о \nu ⿺ \kappa \dot{v} \tau \pi \lambda \eta \rho \omega \mu \dot{v}$ б $\tau \eta v$ аүоро́:

 $\pi \rho о к \varepsilon \mu \varepsilon ́ v o v ~ v \alpha ~ \chi о \rho \eta \gamma \eta \theta \varepsilon i ́ ~ \eta ~ \varepsilon ́ \kappa \pi \tau \omega \sigma \eta ~ \varphi o ́ \rho o v ~ \pi о v ~ о \delta \eta \gamma \varepsilon i ́ ~ \sigma \tau о ~ \alpha \varphi о \rho о \lambda o ́ \gamma \eta \tau о ~ o ́ \rho ı о . ~$

 $\alpha \pi o ́ 10.001$ દ́ $\omega \varsigma 20.000$ عטคต́ $\theta \alpha \pi \rho \varepsilon ́ \pi \varepsilon ı ~ v \alpha ~ \delta \alpha \pi \alpha v \eta ́ \sigma \varepsilon ı ~ \tau о ~ 15 \% ~ к \alpha ı ~ \gamma ı \alpha ~ \varepsilon \iota \sigma o ́ \delta \eta \mu \alpha ~ \pi \alpha ́ v \omega ~$

 عטคஸ́

 $\sigma \varepsilon \mu \varepsilon \tau \alpha \gamma \varepsilon v \varepsilon ́ \sigma \tau \varepsilon \rho \frac{\chi \rho \rho ́ v o ~ v \alpha ~ \varepsilon \gamma \kappa \alpha \tau \alpha \sigma \tau \eta ́ \sigma o v v}{} \operatorname{POS}^{48}$.

 $\pi \alpha \rho \alpha о к о \nu о \mu i ́ \alpha \varsigma$.

$\sigma \chi \varepsilon \tau \iota \zeta o ́ \mu \varepsilon \nu \eta \varsigma \mu \varepsilon \tau \alpha \kappa \rho \cup \pi \tau о v o \mu i ́ \sigma \mu \alpha \tau \alpha$

 $\mu \varepsilon$ то Bitcoin каı то $\varepsilon \gamma \kappa \lambda \eta \mu \alpha \alpha \pi o ́ ~ \tau \eta ~ \varphi о \rho о \delta ı \alpha \varphi v \gamma \eta ́ . ~ O t ~ « \sigma к о \tau \varepsilon ı v \varepsilon ́ \varsigma ~ \delta р \alpha \sigma \tau \eta \rho ı o ́ \tau \eta \tau \varepsilon \varsigma » ~$

 $\varepsilon \pi ル \tau \dot{\omega} \sigma \varepsilon \varepsilon \varsigma^{49}$.

 тov Bitcoin $\theta \alpha \pi \rho \varepsilon ́ \pi \varepsilon ı ~ v \alpha ~ к \alpha \tau \alpha \theta \varepsilon ́ \sigma o v v ~ \tau o v \varsigma ~ \varphi o ́ p o v \varsigma ~ \tau o v \varsigma . ~ . ~$

[^43]

Паро́ $\lambda \alpha \alpha v \tau \alpha ́, ~ \eta ~ \varphi о \rho о \delta ı \alpha \varphi v \gamma ף ́ ~ \pi о v ~ \pi \varepsilon \rho \imath \lambda \alpha \mu ß \alpha ́ v \varepsilon є ~ \tau o ~ B i t c o i n ~ \theta \alpha ~ \pi \alpha \rho \alpha \mu \varepsilon i v \varepsilon є ~ \varepsilon ́ v \alpha ~ \theta \varepsilon ́ \mu \alpha ~$

 $\alpha \pi \omega ் \lambda \varepsilon เ \varepsilon ́ \varsigma ~ \tau o v ̧ . ~ H ~ \varepsilon \pi i ́ t \varepsilon v క ̧ \eta ~ \varepsilon v o ́ s ~ \imath \delta \alpha v ı \kappa o v ́ ~ \sigma \varepsilon v \alpha p i ́ o v ~ i ́ \sigma \omega \varsigma ~ \alpha \pi о \delta \varepsilon \chi \chi \theta \varepsilon i ́ ~ \sigma \chi \varepsilon \delta o ́ v ~ \alpha \delta v ́ v \alpha \tau o, ~$

[^44]
6.7.1 H દ́vvot $\alpha \tau \omega \nu$ ह́ $\mu \mu \varepsilon \sigma \omega \nu \tau \varepsilon \chi \nu เ \kappa \omega ́ v \varepsilon \lambda \varepsilon ́ \gamma \chi o v$

 тovs (ПОД 1050/17-2-2014) ${ }^{51}$.
 $\sigma \chi \varepsilon ́ \sigma \eta ~ \mu \varepsilon ~ \tau \iota \varsigma ~ \alpha \gamma о \rho \varepsilon ́ \varsigma ~ \tau ı \varsigma ~ \delta \alpha \pi \alpha ́ v \varepsilon \varsigma ~ \kappa \alpha ı ~ \mu \varepsilon ~ \tau \eta \nu ~ \pi \rho о \sigma \alpha v ́ \xi ̆ \eta \sigma \eta ~ \tau \eta \varsigma ~ \pi \varepsilon \rho ю v \sigma i ́ \alpha \varsigma ~ \tau о v ~$

 ка兀о́бт $\alpha \sigma \eta(\Pi О \Lambda 1171 / 4-7-13)^{52}$.

Oı દ́ $\mu \mu \varepsilon \sigma \varepsilon \varsigma ~ \tau \varepsilon \chi \nu ı \kappa \varepsilon ́ \varsigma ~ \sigma \tau о \chi \varepsilon v ́ o u v: ~$

 боі́кпбŋร

- $\Sigma \tau \eta \nu \alpha v ́ \xi \eta \sigma \eta \tau \eta \varsigma ~ \sigma v \mu \mu о ́ \rho \varphi \omega \sigma \eta \varsigma \tau \omega v$ рородобои́ $\mu \varepsilon \nu \omega v$

[^45] $\alpha \pi о \sigma \kappa о \pi \varepsilon i ́ ~ \sigma \tau о ~ v \alpha ~ \varepsilon к \sigma v \gamma \chi \rho о v i ́ \sigma \varepsilon ı ~ к \alpha ı ~ v \alpha ~ \varepsilon v ı \sigma \chi ט ́ \sigma \varepsilon ı ~ \tau ı \varsigma ~ v \varphi ı \sigma \tau \alpha ́ \mu \varepsilon v \varepsilon \varsigma ~ \delta ı \alpha \delta ı \kappa \alpha \sigma i ́ \varepsilon \varsigma ~$

 $\mu \pi о \rho \varepsilon i ́ v \alpha \sigma \nu \lambda \lambda \varepsilon \chi \theta \varepsilon i ́ ~ \gamma 1 \alpha ~ \tau о v ~ \varphi о \rho о \lambda о \gamma о v ́ \mu \varepsilon v o ~ \tau о v / \tau \eta \nu ~ \sigma ט ́ \zeta \nu \gamma о ~ \eta ́ ~ \tau \alpha ~ \pi \rho о \sigma \tau \alpha \tau \varepsilon v o ́ \mu \varepsilon v \alpha$ $\mu \varepsilon ́ \lambda \eta ~ \alpha v \tau ஸ ́ v ~ к \alpha ı ~ \tau о ~ о \pi о і ́ о ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \alpha \varphi о \rho \alpha ́ ~ к \alpha ́ \theta \varepsilon ~ \mu о р \varphi ŋ ́ ~ \varepsilon \sigma o ́ \delta \omega v ~ \eta ́ ~ \delta \alpha \pi \alpha v ஸ ́ v ~(П О \Lambda ~$
 бұ\&тเкદ̧́ $\alpha \pi о \varphi \alpha ́ \sigma \varepsilon เ \varsigma$.

甲ородó $\gamma \eta \sigma \eta$.

 ठıá $\theta \varepsilon \sigma \emptyset ́ \tau \eta \varsigma$.

[^46]

Ако́ $\mu \eta \pi \rho \varepsilon ́ \pi \varepsilon ı ~ v \alpha \lambda \alpha \mu \beta \alpha ́ v \varepsilon \tau \alpha ı ~ v \pi o ́ \psi \eta$

- H б $\tau \alpha \theta \varepsilon \rho о ́ \tau \eta \tau \alpha ~ \tau \eta \varsigma ~ к \alpha \theta \alpha \rho \eta ́ \varsigma ~ \theta \varepsilon ́ \sigma \eta \varsigma ~$

- Oı т $\rho \alpha \pi \varepsilon \zeta ı к \varepsilon ́ \varsigma ~ \pi \rho \alpha к \tau \iota к \varepsilon ́ \varsigma ~ \tau о v ~ \varphi о р о \lambda о \gamma о и ́ \mu \varepsilon v o v ~$

 $\delta \alpha \pi \alpha v \omega ́ v ~(\alpha v \alpha \lambda \omega ́ \sigma \varepsilon \omega v ~ \kappa \varepsilon \varphi \alpha \lambda \alpha i ́ \omega v) ~ \sigma \varepsilon ~ \sigma \chi \varepsilon ́ \sigma \eta ~ \mu \varepsilon ~ \tau \alpha ~ \sigma \tau о \chi \varepsilon i ́ \alpha ~ \varepsilon \sigma o ́ \delta \omega v ~(\pi \eta \gamma \omega ́ v$
 vло́кєıгаı $\sigma \varepsilon$ форо $\lambda о ́ \gamma \eta \sigma \eta$.

 $\delta \alpha \pi \alpha v \alpha ́$.

 $\kappa \alpha \tau \alpha \theta \varepsilon ́ \sigma \varepsilon 1$ દítє $v \alpha \tau \alpha \delta \alpha \pi \alpha v \eta ́ \sigma \varepsilon ı$.

[^47]

 $\pi \rho о \sigma \omega \pi \kappa \kappa \omega ́ v ~ \delta \alpha \pi \alpha v \omega ́ v ~ \delta ı \alpha ß i ́ \omega \sigma \eta ร$
 $\delta \eta \lambda \circ v ́ \mu \varepsilon v o$ عוбó $\delta \eta \mu \alpha$

 $\pi \varepsilon \rho i ́ o \delta o / \varphi о \rho о \lambda о \gamma ı к о ́ ~ \varepsilon ́ \tau о \varsigma . ~$

[^48]

- \quad орӨ́́ $\varepsilon \kappa \kappa \pi \tau \omega \sigma \eta ~ \delta \alpha \pi \alpha v ஸ ́ v ~$
- $\alpha \lambda \lambda \alpha \dot{\alpha} \kappa \alpha _$غ́ $\lambda \varepsilon \gamma \chi \circ \varsigma \mu \varepsilon \tau \varepsilon \kappa \mu \alpha \rho \tau \varepsilon ́ \varsigma ~ \delta \alpha \pi \alpha ́ v \varepsilon \varsigma$.

 $\sigma ט ́ \mu \varphi \omega v \alpha \mu \varepsilon$ то α а́ $\theta \rho o ~ 27 v .4174 / 2013^{56}$ (KФE):

 бхєт兀кó $\theta \varepsilon ́ \mu \alpha ~ \gamma ı \alpha ~ \tau \eta v ~ \varepsilon \varphi \alpha \rho \mu о \gamma \eta ́ ~ \tau о v ~ \pi \alpha \rho o ́ v \tau о \varsigma ~ \alpha ́ \rho \theta \rho о v ~$
$\alpha) \tau \eta \varsigma \alpha \rho \chi \eta ́ s \tau \omega v \alpha v \alpha \lambda \sigma \gamma 1 \omega ้$

$\gamma) \tau \eta \varsigma \kappa \alpha \theta \alpha \rho \eta ́ \varsigma ~ \theta \varepsilon ́ \sigma \eta \varsigma ~ \tau о v ~ \varphi о \rho о \lambda о \gamma о v ́ \mu \varepsilon \vee о v$

[^49] $\mu \varepsilon ́ \theta$ oסoı عívaı $\delta \iota \varepsilon \theta v ต ́ \varsigma ~ \alpha v \alpha \gamma v \omega \rho ı \sigma \mu \varepsilon ́ v \varepsilon \varsigma ~ \tau \varepsilon \chi \nu ı \kappa \varepsilon ́ \varsigma ~ \varepsilon \lambda \varepsilon ́ \gamma \chi \circ v$.

6.7.4 $\Sigma \tau \alpha ́ \delta ı \alpha \varepsilon \lambda \varepsilon ́ \gamma \chi o v$

 $\varepsilon \xi \dot{\eta} \zeta:$
 1073/2018 ${ }^{57}$)

 TAXIS,......)

 (Алобто入ŋ́ $\varepsilon \gamma \gamma \rho \alpha ́ \varphi \omega v)$.
4. Елє $\varepsilon \varepsilon \rho \gamma \alpha \sigma i ́ \alpha ~ \pi \lambda \eta \rho о \varphi о \rho ı \varrho ́ v / ~ E \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma i ́ \alpha ~ \sigma \tau о \chi \chi \varepsilon i ́ \omega v ~ \alpha \pi o ́ ~ \beta \alpha ́ \sigma \varepsilon ı \varsigma ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \omega v ~ \pi о v ~$ $\delta 1 \alpha \theta \dot{\varepsilon} \tau \varepsilon 1$ ๆ́ દ́ $\chi \varepsilon ı ~ \pi \rho o ́ \sigma \beta \alpha \sigma \eta ~ \eta ~ Y \pi \eta \rho \varepsilon \sigma i ́ \alpha ~(~(\pi . \chi . ~ E L E N X I S, ~ T ~ X I S, ~ V . I . E . S ., ~ E ı \delta ı к o ́ ~$
 $\kappa \alpha ı ~ \Lambda о \gamma \alpha \rho ı \alpha \sigma \mu \dot{v}$ П $\lambda \eta \rho \omega \mu \dot{\varphi}$ (Г.М.Т.Л. \& $\Lambda . П$.), к. $\lambda \pi$.)
 (ЕКТҮПА ПОА. 1171/4-7-2013)

[^50]9. $\Sigma v ́ v \tau \alpha \xi \eta ~ \tau о v ~ \Sigma \eta \mu \varepsilon ı \omega ́ \mu \alpha \tau о \varsigma ~ \Delta ı \alpha \pi ı \sigma \tau \omega ́ \sigma \varepsilon \omega v ~ E \lambda \varepsilon ́ \gamma \chi о v ~ к \alpha ı ~ \tau \omega v ~ \pi \rho о \sigma \omega \rho ı v ต ́ v ~$
 Koıvoтоíๆбף.

11. Е $\pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \tau \omega \nu \alpha \pi o ́ \psi \varepsilon \omega \nu \tau 0 v \varepsilon \lambda \varepsilon \gamma \chi o ́ \mu \varepsilon v \circ v$

 $\pi \rho о \sigma \tau i ́ \mu o v$.
13. $\Sigma v ́ v \tau \alpha \xi \eta \mu \eta v v \tau \eta ́ \rho ı \alpha \varsigma ~ \alpha v \alpha \varphi о \rho \alpha ́ \varsigma ~ \sigma v ́ \mu \varphi \omega v \alpha \mu \varepsilon \tau \iota \varsigma ~ \delta ı \alpha \tau \alpha ́ \xi \varepsilon ı \varsigma ~ \tau \omega v \alpha ́ \rho \theta \rho \omega v ~ 55 A ~ \kappa \alpha ı ~$ 68 tov v. 4174/2013 (A'170).
 $\pi \rho о \sigma \delta ı \rho ı \sigma \mu$ v́ ¢о́ $\rho о v$ каı $\pi \rho \alpha ́ \xi \varepsilon \omega v ~ \varepsilon \pi ı \beta о \lambda \eta ́ \varsigma ~ \pi \rho о \sigma \tau i ́ \mu \omega v$.

 (ПОА.1180/2014.

6.7.5 H $\delta \iota \alpha \delta ı \kappa \alpha \sigma i ́ \alpha$ tov $\varepsilon \lambda \varepsilon ́ \gamma \chi o v$

 тоv $\varepsilon \lambda \varepsilon ́ \gamma \chi \circ v \mathrm{E} \mathrm{\lambda} \mathrm{\alpha} \mathrm{\tau} \mathrm{\tau} \mathrm{\omega ́} \mathrm{\mu} \mathrm{\alpha} \mathrm{\tau} \mathrm{\alpha} \mathrm{\tau} \mathrm{\eta} \mathrm{\varsigma} \mathrm{\varepsilon v} \mathrm{\tau о} \mathrm{\lambda} \mathrm{\eta ́s} \mathrm{\mu} \mathrm{\pi о} \mathrm{\rho оv́v} \mathrm{v} \mathrm{\alpha} \mathrm{\pi} \mathrm{\rho ок} \mathrm{\alpha} \mathrm{\lambda} \mathrm{\varepsilon ́} \mathrm{\sigma оvv} \mathrm{\alpha кט} \mathrm{\rho о́} \mathrm{\tau} \mathrm{\eta} \mathrm{\tau} \mathrm{\varepsilon} \mathrm{\varsigma} \mathrm{\tau} \mathrm{\eta} \mathrm{\varsigma}$

 غ́ $\mu \mu \varepsilon \sigma \varepsilon \varsigma ~ \tau \varepsilon \chi \nu เ \kappa \varepsilon ́ \varsigma ~ \varepsilon \lambda \varepsilon ́ \gamma \chi О ৩ ~ \tau \rho о \pi о \pi о เ \varepsilon i ́ \tau \alpha ı ~ \eta ~ \varepsilon \nu \tau о \lambda \eta ́ . ~$

[^51]

 غ́ $\chi \varepsilon \imath ~ \pi \rho о ́ \sigma ß \alpha \sigma\rceil \eta ~ \eta ~ Y \pi \eta \rho \varepsilon \sigma i ́ \alpha ~(\pi . \chi . ~ E L E N X I S, ~ T A X I S, ~ V . I . E . S ., ~ E ı \delta ı к o ́ ~ \Lambda о \gamma ı \sigma \mu к о ́ ~$
 $\Lambda о \gamma \alpha \rho ı \sigma \mu \omega ́ v ~ П \lambda \eta \rho \omega \mu \omega ́ v(\Sigma . М . Т . \Lambda . \& ~ \Lambda . П),. ~ к . \lambda \pi).$.

 4172/13)

 $\varepsilon \lambda \varepsilon ́ \gamma \gamma 0 v$

[^52]
 $\pi \varepsilon \rho ю v \sigma 1 \alpha \kappa \eta ́ ~ к \alpha \tau \alpha ́ \sigma \tau \alpha \sigma \eta ~ к \alpha ı ~ \tau \iota \varsigma ~ \sigma v v \theta \eta ́ к \varepsilon \varsigma ~ \delta ı \alpha \beta i ́ \omega \sigma \eta \varsigma ~ \tau о v ~ \varphi о \rho о \lambda о \gamma о v \mu \varepsilon ́ v о v, ~ \tau \eta \varsigma ~$

 1171/4.7.2013

 vாó $\theta \varepsilon \sigma \eta \varsigma . ~ O ı ~ \alpha \pi \alpha v \tau \eta ́ \sigma \varepsilon ı \varsigma ~ \tau о v ~ \varepsilon \lambda \varepsilon \gamma \chi о \mu \varepsilon ́ v o v ~ \sigma \tau \alpha ~ \varepsilon ́ v \tau v \pi \alpha ~ \varepsilon i ́ v \alpha ı ~ \delta \varepsilon \sigma \mu \varepsilon v \tau ı к \varepsilon ́ \varsigma ~ \omega \varsigma ~ \pi \rho о \varsigma ~ \tau о v ~$

 $\pi \varepsilon \rho เ o ́ \delta o v$.

[^53]

3. Елıбто入ท́ $\pi \rho \circ \varsigma ~ \tau о ~ \varphi о р о \lambda о \gamma о и ́ \mu \varepsilon v o ~$

 $\pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta ~ \delta \varepsilon v ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ v \pi \varepsilon \rho \beta \alpha i ́ v \varepsilon ı ~ \tau о ~ \pi \rho \alpha \gamma \mu \alpha \tau \iota к о ́ ~ \delta ı \alpha \theta \varepsilon ́ \sigma \mu о ~ к \varepsilon \varphi \alpha ́ \lambda \alpha ı о ~$

 عíval $\sigma v v \varepsilon \chi o ́ \mu \varepsilon v \varepsilon \varsigma ~ \kappa \alpha l ~ v \alpha ~ \varphi \theta \alpha ́ v o u v ~ \mu \varepsilon ́ \chi \rho ı ~ к \alpha ı ~ \tau \eta \nu ~ \pi \rho о \eta \gamma о v ́ \mu \varepsilon v \eta ~ \delta ฑ ́ \lambda \omega \sigma \eta ~ \varphi о \rho о \lambda о \gamma i ́ \alpha s ~$

[^54]

ェYMПEPAMATA

 aүopá.

 $\pi \rho о \sigma \pi \alpha ́ \theta \varepsilon i \alpha ~ v \alpha ~ \alpha \pi о \varphi \varepsilon v \chi \theta \varepsilon i ́ ~ \eta ~ \varepsilon \mu \pi \lambda о к \eta ́ ~ \tau \rho i ́ \tau \omega v ~ \sigma \tau \eta ~ \rho о \eta ́ ~ \pi \lambda \eta \rho \omega \mu \omega ́ v ~ o ́ \mu \omega s ~ \varepsilon i ́ v \alpha ı ~$
 $\alpha \pi \dot{\tau \varepsilon \rho o ~} \mu$ غ́ $\lambda \lambda о$.

 крилтоvоці́б $\mu \alpha \tau о \varsigma$.

 $\varepsilon \kappa \alpha ́ \sigma \tau о \tau \varepsilon \pi \lambda \alpha \tau \varphi о ́ \rho \mu \alpha \varsigma ~ \tau о v ~ к р \cup \pi \tau о v о \mu і ́ \sigma \mu \alpha \tau о \varsigma$.
 ठı $\alpha \varepsilon i ́ p ı \sigma \eta ~ \tau \omega v ~ к \rho v \pi \tau о v о \mu ı \sigma \mu \alpha ́ \tau \omega v ~ к \alpha ı ~ \pi \alpha \rho \alpha ́ ~ \tau ı \varsigma ~ \beta \varepsilon \lambda \tau ı \omega ́ \sigma \varepsilon ı \varsigma ~ \pi о v ~ \varepsilon ́ \chi о v v ~ \gamma i ́ v e ı ~ к \alpha ı ~ \tau \alpha ~$
 $\varepsilon v \alpha ́ \lambda \omega \tau \eta ~ \sigma \varepsilon ~ \kappa \cup \beta \varepsilon \rho v o \varepsilon \pi \imath \theta \varepsilon ́ \sigma \varepsilon \iota \varsigma ~ \kappa \alpha ı ~ \sigma \varepsilon ~ \kappa \alpha \kappa o ́ ß o v \lambda o v ̧ ~ h a c k e r s . ~$

BIBАIOГРАФІА

Eג入ทvıкท́:

 $\Sigma \tau \alpha \mu$ ои́ $\lambda \eta$

 opı0 ε ź $\eta \sigma \eta$, IOBE
 Палаらŋ́бๆ

Mankiw G., (2010), Макрооюкогоиюкŋ́ $\theta \varepsilon \omega \rho i ́ \alpha, ~ \varepsilon к \delta о ́ \sigma \varepsilon ı \varsigma ~ G u t e n b e r g ~$

Eยvó $\gamma \lambda \omega \sigma \sigma \eta:$

Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S., (2012). Evaluating User Privacy in Bitcoin

Antonopoulos, A.M.,(2014). Mastering Bitcoin

Beigel, O., 2015. How to Safely Deposit and Withdraw Bitcoins from a Paper Wallet Bordo M., Levin A., (2017), Central bank digital currency and the future of monetary policy, Nber

Engert W., Fung B., (2017), Central bank digital currency: motivations and implications, Researchgate

European Central Bank, (ECB), (2015), Virtual currency schemes -a further analysis

Feige E., (1989), The underground economies, Cambridge, U.K

Hayes A., (2015), A Cost of Production Model for Bitcoin, The New School for Social Research

Grinberg R., (2012), Bitcoin: An innovative alternative digital currency, Hein Online Gans J., Halaburda H., (2015), Some economics of private digital currency, Nber Kaplanov N., (2012), Nerdy money: Bitcoin, the private digital currency, and the case against its regulation, Heinonline

Mullan, P., (2014), The Digital Currency Challenge: Shaping Online Payment Systems Through U.S. Financial Regulations. U.S.A.: Palgrave Macmillan US

Yermark D., (2015), Is Bitcoin a real currency? An economic appraisal, Elsevier

[^0]: ${ }^{1}$ Mankiw G., (2010), Макрооюкоvонıки́ $\theta \varepsilon \omega р і ́ \alpha$, ккঠóбєıৎ Gutenberg

[^1]:
 ${ }^{3}$ Dornbusch R., Fischer S., (2008), Макрооюкоvоцıкй, єкঠо́бєıऽ Крıтıки́

[^2]:

[^3]:

[^4]:

[^5]:

[^6]: ${ }^{8}$ Grinberg R., (2012), Bitcoin: An innovative alternative digital currency, Hein Online

[^7]: ${ }^{9}$ Kaplanov N., (2012), Nerdy money: Bitcoin, the private digital currency, and the case against its regulation, Heinonline

[^8]: ${ }^{10}$ Yermark D., (2015), Is Bitcoin a real currency? An economic appraisal, Elsevier

[^9]: ${ }^{11}$ Bordo M., Levin A., (2017), Central bank digital currency and the future of monetary policy, Nber

[^10]: ${ }^{12}$ Bordo M., Levin A., (2017), Central bank digital currency and the future of monetary policy, Nber

[^11]: ${ }^{13}$ Engert W., Fung B., (2017), Central bank digital currency: motivations and implications, Researchgate

[^12]: ${ }^{14}$ Engert W., Fung B., (2017), Central bank digital currency: motivations and implications, Researchgate

[^13]: ${ }^{15}$ Gans J., Halaburda H., (2015), Some economics of private digital currency, Nber

[^14]: ${ }^{16}$ Engert W., Fung B., (2017), Central bank digital currency: motivations and implications, Researchgate

[^15]: ${ }^{17}$ Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S., (2012). Evaluating User Privacy in Bitcoin

[^16]: ${ }^{18}$ Antonopoulos, A.M.,(2014). Mastering Bitcoin

[^17]: ${ }^{19}$ Antonopoulos, A.M.,(2014). Mastering Bitcoin

[^18]: ${ }^{20}$ European Central Bank, (ECB), (2015), Virtual currency schemes -a further analysis

[^19]: ${ }^{21}$ Mullan, P., (2014), The Digital Currency Challenge: Shaping Online Payment Systems Through U.S. Financial Regulations. U.S.A.: Palgrave Macmillan US

[^20]: ${ }^{22}$ Mullan, P., (2014), The Digital Currency Challenge: Shaping Online Payment Systems Through U.S. Financial Regulations. U.S.A.: Palgrave Macmillan US

[^21]: ${ }^{23}$ Mullan, P., (2014), The Digital Currency Challenge: Shaping Online Payment Systems Through U.S. Financial Regulations. U.S.A.: Palgrave Macmillan US

[^22]: ${ }^{24}$ Mullan, P., (2014), The Digital Currency Challenge: Shaping Online Payment Systems Through U.S. Financial Regulations. U.S.A.: Palgrave Macmillan US

[^23]: ${ }^{25}$ Mullan, P., (2014), The Digital Currency Challenge: Shaping Online Payment Systems Through U.S. Financial Regulations. U.S.A.: Palgrave Macmillan US

[^24]: ${ }^{26}$ Mullan, P., (2014), The Digital Currency Challenge: Shaping Online Payment Systems Through U.S. Financial Regulations. U.S.A.: Palgrave Macmillan US
 ${ }^{27}$ Hayes A., (2015), A Cost of Production Model for Bitcoin, The New School for Social Research

[^25]: ${ }^{28}$ Hayes A., (2015), A Cost of Production Model for Bitcoin, The New School for Social Research

[^26]: ${ }^{29}$ Hayes A., (2015), A Cost of Production Model for Bitcoin, The New School for Social Research

[^27]: ${ }^{30} \mathrm{https}: / / \mathrm{www}$. piraeusbank.gr/el/epiheiriseis-epaggelmaties/lyseis-emporon/collections-eisprakseis/collections-eft-pos

[^28]: ${ }^{31}$ https://www.piraeusbank.gr/el/epiheiriseis-epaggelmaties/lyseis-emporon/collectionseisprakseis

[^29]: ${ }^{32}$ https://www.piraeusbank.gr/el/Epiheiriseis-Epaggelmaties/Lyseis-Emporon/CollectionsEisprakseis

[^30]:

[^31]: бто $\eta \lambda \varepsilon к \tau \rho о$ тко́ $\varepsilon \mu \pi о ́ \rho ı о, ~ \varepsilon к \delta о ́ \sigma \varepsilon ı \varsigma ~ \sum \alpha ́ к к о ч \lambda \alpha ~$

[^32]: ${ }^{35} \mathrm{https}: / / \mathrm{www}$. piraeusbank.gr/el/epiheiriseis-epaggelmaties/lyseis-emporon/collectionseisprakseis

[^33]: ${ }^{36} \mathrm{https}: / / \mathrm{www}$. piraeusbank.gr/el/epiheiriseis-epaggelmaties/lyseis-emporon/collectionseisprakseis

[^34]: ${ }^{37}$ https://www.piraeusbank.gr/el/epiheiriseis-epaggelmaties/lyseis-emporon/collectionseisprakseis

[^35]: ${ }^{38}$ Feige E., (1989), The underground economies, Cambridge, U.K

[^36]:

[^37]: ${ }^{40}$ T $\alpha \tau \sigma о \varsigma ~ N ., ~(2001), ~ П \alpha \rho \alpha о ı к о v о \mu i ́ \alpha ~ к \alpha ı ~ \varphi о р о \delta ı \alpha \varphi \cup \gamma ŋ ́ ~ \sigma \tau \eta \nu ~ E \lambda \lambda \alpha ́ \delta \alpha, ~ \varepsilon к \delta o ́ \sigma \varepsilon ı \varsigma ~ П \alpha \pi \alpha \zeta ŋ ́ \sigma \eta ~$
 ${ }^{41}$ А $л$ ó $\varphi \sigma \eta ~ 94 / 168 / E K ~$

[^38]:

[^39]:

[^40]: opıo日่́тๆбๆ, IOBE

[^41]: ${ }^{45}$ Feige E., (1989), The underground economies, Cambridge, U.K

[^42]: ${ }^{46}$ www.cnn.gr, 12/1/2018
 ${ }^{47}$ www.capital.gr , 22/1/2018

[^43]: ${ }^{48}$ www.capital.gr , 24/12/2018
 ${ }^{49}$ Beigel, O., 2015. How to Safely Deposit and Withdraw Bitcoins from a Paper Wallet

[^44]: ${ }^{50}$ Beigel, O., 2015. How to Safely Deposit and Withdraw Bitcoins from a Paper Wallet

[^45]: ${ }^{51}$ ПО $1050 / 17-2-14$
 ${ }^{52}$ ПО 1171 / 4-7-13

[^46]: ${ }^{53}$ ПОА 1171 / 4-7-13

[^47]: ${ }^{54}$ Nó μ о̧ 4172 / 2013

[^48]: ${ }^{55}$ Nó μ о̧ 4172 / 2013

[^49]: ${ }^{56}$ Nó μ o̧ 4172 / 2013

[^50]: ${ }^{57}$ ПО $\Lambda 1073 / 2018$

[^51]: ${ }^{58}$ Nó μ о̧ 4557/2018

[^52]: ${ }^{59}$ Nó μ о̧ $4170 / 2013$

[^53]: ${ }^{60}$ ПО $1270 / 2013$

[^54]: ${ }^{61}$ ПО $1270 / 2013$

