Ιδρυματικό Καταθετήριο Τ.Ε.Ι. Δυτικής Ελλάδας

“Εισαγωγή στην Επιστήμη Δεδομένων και στην Εκπαίδευση μοντέλου Μηχανικής Όρασης”

Εμφάνιση απλής εγγραφής

dc.contributor.advisor ΧΡΙΣΤΟΔΟΥΛΟΥ, ΣΩΤΗΡΙΟΣ
dc.contributor.author ΓΕΩΡΓΙΟΠΟΥΛΟΣ, ΘΕΟΔΩΡΟΣ
dc.contributor.author ΑΝΑΣΤΑΣΟΠΟΥΛΟΣ, ΖΩΗΣ
dc.date.accessioned 2024-04-24T09:24:46Z
dc.date.available 2024-04-24T09:24:46Z
dc.date.issued 2023
dc.identifier.uri http://repository.library.teimes.gr/xmlui/handle/123456789/10855
dc.description.abstract Στην παρούσα πτυχιακή εργασία θα γίνει αναφορά σε γενικά καλές πρακτικές δημιουργίας ενός βασικού μοντέλου (Base Model) μηχανικής μάθησης (Machine Learning). Ο τομέας που ασχολείται με την μηχανική μάθηση είναι αυτός της Επιστήμης Δεδομένων (Data Science) και η παρούσα πτυχιακή εργασία θα επεκταθεί στην υπό-κατηγορία της Μηχανικής Μάθησης: Τα νευρωνικά Δίκτυα (Neural Networks). Όπως θα δούμε παρακάτω, η εκπαίδευση των νευρωνικών δικτύων ανήκει στον τομέα της Μηχανικής Όρασης (Computer Vision). Οι συγκεκριμένοι τομείς επιλέχθηκαν διότι υπάρχουν κάποιες προ εργασίες στην προετοιμασία των δεδομένων που είναι αναγκαίες και ευρέως επιλέξιμες στον επιστημονικό κλάδο που ασχολείται με την Μηχανική Όραση, έτσι ώστε να επιτευχθεί η δημιουργία ενός μοντέλου με σχετικά καλές επιδόσεις. Προφανώς θα εξηγήσουμε, τι εννοούμε καλές επιδόσεις, τι εννοούμε προ-εργασία δεδομένων και στο τέλος θα εκπαιδεύσουμε ένα νευρωνικό συνελικτικό μοντέλο μηχανικής όρασης με γνώμονα τις μετρικές αξιολόγησης των μοντέλων που υπάρχουν. Είναι σημαντικό να αναφέρουμε, πως μία κατανόηση της θεωρίας στο τομέα της επιστήμης δεδομένων είναι αναγκαία, έστω εισαγωγικά, επομένως η παρούσα πτυχιακή εργασία θα καλύψει όλο το θεωρητικό υπόβαθρο αναγκαίο για την κατανόηση της εκπαίδευσης του νευρωνικού συνελικτικού μοντέλου που θα εισάγουμε στο τέλος. Η γλώσσα προγραμματισμού που θα γραφτεί ο κώδικας θα είναι η Python, με την βιβλιοθήκη TensorFlow της Google. Ο λόγος επιλογής αυτών είναι το εύκολο συντακτικό της Python και η καλή υποστήριξη της TensorFlow στο Google Colab, που θα είναι η πλατφόρμα εφαρμογής του κώδικα και εκπαίδευσης των νευρωνικών δικτύων. Στο τέλος της πτυχιακής εργασίας θα δοθεί όλος ο κώδικας που γράφτηκε κατά την διάρκεια της εκπόνησής της. ii Summary In this thesis we will refer to general good practices for creating a Base Model for Machine Learning. The field that deals with machine learning is that of Data Science and this thesis will expand on the sub-category of Machine Learning: Neural Networks. As we will see below, the training of neural networks belongs to the field of Computer Vision. These domains were chosen because there are some pre-tasks in data preparation that are necessary and widely selectable in the discipline dealing with Machine Vision, in order to achieve a model with relatively good performance. Obviously, we will explain, what we mean by good performance, what we mean by data pre-task and at the end we will train a neural convolutional machine vision model based on the evaluation metrics of existing models. It is important to mention, that an understanding of theory in the field of data science is necessary, even at an introductory level, therefore this thesis will cover all the theoretical background necessary to understand the training of the neural convolutional model that we will introduce at the end. The programming language that the code will be written in will be Python, with Google's TensorFlow library. The reason for choosing these is the easy syntax of Python and the good support of TensorFlow in Google Colab, which will be the platform for implementing the code and training the neural networks. At the end of the thesis all the code written during the thesis will be given el
dc.publisher ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ el
dc.title “Εισαγωγή στην Επιστήμη Δεδομένων και στην Εκπαίδευση μοντέλου Μηχανικής Όρασης” el
dc.type Πτυχιακή Εργασία el


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής

Αναζήτηση στο Καταθετήριο


Σύνθετη αναζήτηση

Πλοήγηση

Ο λογαριασμός μου